

Investigating the effects of short-term spinal cord stimulation on sleep health in patients with refractory neuropathic pain: A state-of-the-art actigraphy analysis

Hannah J. Coyle-Asbil, Andrew Lim, Jamal Kara, Anuj Bhatia, Mandeep Singh

3/

Neuropathic pain (NP)

General Aim: investigate the effect of short-term SCS on the sleeping patterns of males and females suffering from NP using raw-data based actigraphy

Sleep

Spinal Cord Stimulation (SCS)

- Subjective sleep questionnaires support the use of SCS¹
- Actigraphy is a reliable objective tool that measures sleep²
 - → Count vs Raw acceleration data

Methods

Participants

- One-hundred and six (n=106) with NP in their back and/or lower limbs were enrolled
- 49 females (49.96 \pm 12.74 years; trial successful in 34) and 57 males (54.81 \pm 13.32 years; trial successful in 38)

GENEActiv actigraphy device worn on the wrist Sampling frequency: 50 Hz

Methods cont'd

Sleep Analysis

• GGIR R Package³: Auto-calibrate signal \rightarrow Non wear time removal \rightarrow van Hees et al (2015, 2018) sleep algorithms

Total Sleep Time (TST)	Total amount of sleep, in minutes
Sleep Efficiency (SE)	Ratio between TST and time in bed, expressed as a %
Wake after sleep onset (WASO)	Time spent awake after initial sleep onset in minutes

- Univariate analyses: Sleep metrics were different between the successful vs. unsuccessful participants
 - <u>SCS trial success:</u> 50% reduction in intensity of pain compared to baseline (Numerical Rating Scale)
- Mixed-model ANOVA: Sleep metrics in males and females at baseline (night 1) and follow-up (night 7)

- Baseline
- Follow-up

Results

- Univariate analyses \rightarrow no significant difference between successful and unsuccessful participants
- Mixed-model ANOVA \rightarrow significant main effect of time-point (TST & WASO) and sex (SE & TST)

Conclusions

SCS significantly improves the sleep of individuals suffering from NP → reduction in WASO

Future Directions

 Are these improvements in sleep are maintained long-term, and result in improved functional and quality of life outcomes?

References

- 1. Ramineni T, Prusik J, Patel S, et al. The Impact of Spinal Cord Stimulation on Sleep Patterns. *Neuromodulation*. 2016;19(5):477-481.
- 2. De Jaeger M, Goudman L, De Groote S, Rigoard P, Monlezun O, Moens M. Does Spinal Cord Stimulation Really Influence Sleep? https://doi.org/10.1111/ner.12850. *Neuromodulation*. 2019/04/01 2019;22(3):311-316. doi:https://doi.org/10.1111/ner.12850
- 3. Migueles JH, Rowlands AV, Huber F, Sabia S, van Hees VT. GGIR: A Research Community—Driven Open Source R Package for Generating Physical Activity and Sleep Outcomes From Multi-Day Raw Accelerometer Data. *J Meas Phys Behav*. 01 Sep. 2019 2019;2(3):188-196. doi:10.1123/jmpb.2018-0063