Perioperative Upper Airway Considerations in Pediatric Obstructive Sleep Apnea

Kimmo Murto MD, FRCPC

Department of Anesthesiology & Pain Medicine, CHEO
Associate Professor, University of Ottawa, Faculty of Medicine
Email: <u>Kmurto@cheo.on.ca</u>
www.sasmhq.org

Conflict of Interest

• None to declare

OBJECTIVES At the end of this session audience members will be able to:

- Understand how OSA related upper airway structure, function and related pathophysiology impact anesthetic management in children.
- List key limitations of published pediatric OSA associated management guidelines.
- Appreciate a role for anti-inflammatory agents to modulate perioperative respiratory adverse events (PRAEs) in children with OSA.

Preoperative Optimization "OSA: Risk Stratification & Diagnosis" Sedation Regional Anesthesia: Neuroaxial or PNB LAI-Local Anesthetic Infiltration; PNB=peripheral nerve Block Neuroaxial Anesthesia Anesthes

Obstructive Sleep Disordered Breathing (SDB) "A syndrome of upper dysfunction during sl

 "A syndrome of upper airway dysfunction during sleep characterized by snoring and/or increased respiratory effort that result from increased upper airway resistance and pharyngeal collapsibility"

Kaditis AG Eur Respir J 2016

SDB Spectrum Normal Primary Snoring Resistance Syndrome (UARS) Pediatric OSA Prototype = Adenotonsillar hyperplasia Symptoms End-organ effects

Pediatric OSAS & Societal Impact

- Common
 1-5% of children; ↑ with obesity
 ? Surgical prevalence
 M>F & age phenotypes
 Secondary & associated morbidity
- ↓ socioeconomic status
- Expensive
- ↓School and job performance
 ↑ healthcare utilization
 Altered CVS health trajectory

- Shorter life span
- Treatment & health trajectory

 Jennum P et al. Thorax 2013

Pediatric mortality after adenotonsillectomy				
	Source	Years	15-30 Day Death Rate (per 10,000)	
Adenotonsillectomy				
US (Brown K Ane	esth Analg 2014)	1970s	0.3-0.6	
US out-patient (Shay S Laryngoscope 2015) 2010			0.6	
US in-patient (A	llareddy V Clin Pediatr 2016)	2001-10	4	
Swed	ric Prediction Tools for Perioperative Mor "Pulmonary or Respiratory Disea (Subramanyam R Anesth Analg 2015; Nasr VG Ane.	se"	. 24	

		jury After Tonsill	ectomy in
	ith a Focus	on Obstructive S	•
Houston, V	Ve Have a P	oblem!	
The Larrongoscope		D,† and Karen B. Domino, MD	, MPH†
© 2013 The American Laryngols Rhinelogical and Otological Soc	ical, ty, Inc.		
		er Tonsillectomy: Etiologic	Factors
and Strategies	ioi i revention	pioids-related malpract	ice claims
Julie L. Goldman, Rob	following tonsille 1984–2012	ctomy in USA: LexisNex	is claims databas
	Rajeev Subramanyam ¹ , Vidya Senthilkumar Sadhasivam ¹	Chidambaran ¹ , Lili Ding ² , Charles M. N	Nyer III ³ & Pediatr Anesth 2014

respiratory complications & doseresponse evident Adenotonsillectomy Complications: A Meta-analysis Pediatrics 2015 Grazela De Luca Garto, DOS, Mad, PhD**, Damila Pachtor Pervira, DOS*, Sacil Aydrinos, MD*, Rakeah Bhattacharjee, MD*, Hai-lang Tan, MBSS, Leila Kherrandah-Gozal, MD MSc*, Carlos Fores-Mir. DDSC, MSc, DSC, RDCC(D*), David Gozal, MD, MBA, FAMP* The Learney Service Complication of Control of Control

Pediatric management guidelines are confusing
PSG Indications
"Everyone"PrescriptiveNot really necessary
AHI Diagnostic Threshold for "Severe" OSA=↑Risk for PRAE? YesNoWhat does "severe" mean?Not acknowledged
PSG Alternatives Acceptable?
YesNot acknowledged

Ouestionnaires	Othe
moving out of the s	sleep lab
OSAS diagnosis is	

- Symptoms not diagnostic
- Physical findings "unreliable"

Include associated co-morbidities (define endotype)

er options

- Single-channel recordings
 Oximetry <u>+</u> airflow or ECG
- Home-based sleep studies
 PSG and polygraphy
- Biological Markers (De Luca Canto G Sleep Med
- Blood
 Urinary-most promising
 Salivary
 Exhaled condensate

Gozal D Curr Opin Pulm Med 2015

//	122		10 000	
" Ivnica	al" tonsi	llectomy	, disposiți	on planning

Definition "Severe" OSA leading to ↑ risk of PRAE: NO CONSENSUS

Unknown how PRAE risk modulated by associated pathophysiology, age, comorbidities, skill of providers (and opioids)

Intensive care unit admission criteria: NO CONSENSUS

Monitor according to local practice

Does risk for PRAE vary by procedure?

Schwengel DA Anesthesiology Clin 2014

Pediatric OSA Endotypes	Infant (0-<2 yrs)	Child (2-8 yrs)	Pre-teen/Teen (9-21 yrs)	
Lymphoid hyperplasia (adenoids +/- tonsils)	+/-	+++	+	
Soft tissue				
Obesity	+/-	++	+++	
"Genetic" (e.g. Hurler's, Prader-Willi, Beckwith-Wiedemann)	++	+++	+	
Craniofacial Syndromes				
Vault & Mandible (e.g. Craniosynostosis & P Robin)	+++	++	+/-	
Foramen Magnum (e.g. Arnold-Chiarii)	++	++	+/-	
Neuromuscular (e.g. C palsy & Trisomy 21)	+	+++	++	
Prematurity (< 32 wks)	+++	+	-	
Inflammatory (e.g. Asthma & Sickle Cell Dis.)	+/-	+++	++	

Pharyngeal wall tension, tracheal traction & abdominal pannus

Does dysfunctional neuro-motor control of the upper airway have a role?

- Day vs night time obstruction
- ↑EMG genioglossus activity
- Not all children with anatomical obstruction have OSA
- Variable OSA cure rate following adenotonsillectomy

	Receptor (Location)	OSA Phenotypes		
Upper Airway Findings		Infant (0-<2 yrs)	Child (2-8 yrs)	Pre-teen/Teer (9-21 yrs)
Collapsibility (genioglossus)	CO2 (Brain Stem) Mechano (airway)	High	High	High
Ventilatory drive	O2 (Peripheral) CO2 (Brain Stem)	?	Normal	?
Arousibility "Airway Self-	O2 (Peripheral) CO2 (Brain Stem)	Rlunted	Rlunted	_Rlunted to high

Upper airway collapsibility: Anesthetic agents & opioids			
Generic Drug Name	Airway Collapse	Mechanism of Action	
Midazolam	+	CNS GABA _A , ?α dose	
Sevoflurane	+++	CNS GABA _A , α dose	
Desflurane	+++	CNS GABA _A	
Propofol	++	CNS GABA _A /NMDA, α dose	
Dexmedetomidine	+/-	CNS α ₂ adrenergic agonist	
Ketamine +/- NMDA receptor antagonist; ↑EMG genioglossus (rats) GABA _A receptors-stimulation leads to myo-relaxation			
Anest		ts <u>enhance</u> GABA _A receptor activity _{ampagna} JA NEJM May 2003	

Summary: Perioperative Upper Airway Considerations in Children with OSA

PATIENT

- Prone to impaired airway neuro-motor function due to drugs
 Spectrum of comorbidities secondary to OSA or "age-specific"

PREOPERATIVE

- Risk Stratification for PRAE

 - Age < 3 yrs & "significant" comorbidities
 "Severe" OSA by Hx/Px, PSG or Overnight Pulse Oximetry
 - "Prescriptive PSG" needed?
 "Invasiveness" of surgery & anesthesia

 - Need for postoperative opioids

POSITION

Head up "Tracheal Tethering", avoid being supine

Summary continued

- PROCEDURE

 Goals-prepare for "challenging" airway & PRAEs

 No one "best" anesthetic technique;

 "Pharyngeal sparing" approach

 Emerge awake and consider nasopharyngeal airway

POSTOPERATIVE

- **OSTOPERATIVE**
 Monitoring
 **Continuous SpO2 preferably on room air and asleep
 **Appropriate duration unknown (2-6 hrs)
 **Significance of minor/major PRAEs during recovery unknown (Weingarten G Anesth Analg 2015)
 Appleasies

- Multimodal and avoid opioid infusions or "around-the-clock"
 Optimal approach unknown (Anderson BJ Pediatr Anesth 2011)
 Parent Preparation
 2019 AAOHNS Tonsillectomy Guideline

Thank you!

Kimmo Murto MD, FRCPC

Department of Anesthesiology & Pain Medicine, CHEO Associate Professor, University of Ottawa, Faculty of Medicine Email: Kmurto@cheo.on.ca www.sasmhq.org

