Designing Clinical Trials in Perioperative Sleep Medicine A Rationale and Pragmatic Approach

Daniel J. Gottlieb, MD, MPH

Director, Sleep Disorders Center, VA Boston Healthcare System Program in Sleep and Cardiovascular Medicine, Brigham & Women's Hospital Division of Sleep and Circadian Disorders, Harvard Medical School

No financial conflicts of interest.

"Joe the Fat Boy," from Dickens' Posthumous Papers of the Pickwick Club, 1848

Prevalence of Obstructive Sleep Apnea Wisconsin Sleep Cohort, 2007-2010

	Age	Prevalence in Men	Prevalence in Women
	30-70		
AHI≥5		34%	17%
AHI ≥ 15		13%	6%
	50-70		
AHI≥5		43%	28%
AHI ≥ 15		17%	9%

Prevalence of Obstructive Sleep Apnea in patients undergoing elective surgery

Washington University Study

Minimum prevalence estimate: 22% 72% of OSA patients undiagnosed

Finkel, Sleep Med 2009;10:753

Prevalence of Obstructive Sleep Apnea in patients undergoing elective surgery

Sinah. Br J

81% of OSA patients undiagnosed

Finkel, Sleep Med 2009;10:753

Singh, Br J Anaesth 2013;110:629

Does Obstructive Sleep Apnea Influence Perioperative Outcome? A Qualitative Systematic Review for the Society of Anesthesia and Sleep Medicine Task Force on Preoperative Preparation of Patients with Sleep-Disordered Breathing

Mathias Opperer, MD,*† Crispiana Cozowicz, MD,*† Dario Bugada, MD,‡ Babak Mokhlesi, MD, MSc,§ Roop Kaw, MD,|| Dennis Auckley, MD,¶ Frances Chung, MBBS, FRCPC,# and Stavros G. Memtsoudis, MD, PhD, FCCP*†

50 studies of surgery with general or neuraxial anesthesia, including >400,000 OSA cases, >8M controls

- 11 ICD dx (~360,000 cases)
- 17 PSG/HSAT dx (~7000 cases, most retrospective)
- 15 screening questionnaire "high risk" (~5,000 cases)
- 7 diagnosis in chart/clinical diagnosis (~40,000 cases)

Does Obstructive Sleep Apnea Influence Perioperative Outcome? A Qualitative Systematic Review for the Society of Anesthesia and Sleep Medicine Task Force on Preoperative Preparation of Patients with Sleep-Disordered Breathing

Mathias Opperer, MD,*† Crispiana Cozowicz, MD,*† Dario Bugada, MD,‡ Babak Mokhlesi, MD, MSc,§ Roop Kaw, MD,|| Dennis Auckley, MD,¶ Frances Chung, MBBS, FRCPC,# and Stavros G. Memtsoudis, MD, PhD, FCCP*†

50 studies of surgery with general or neuraxial anesthesia, including >400,000 OSA cases, >8M controls

- 11 ICD dx (~360,000 cases)
- 17 PSG/HSAT dx (~7000 cases, most retrospective)
- 15 screening questionnaire "high risk" (~5,000 cases)
- 7 diagnosis in chart/clinical diagnosis (~40,000 cases)

Table 1. Included Studies for Procedures Under General or Neuraxial Anesthesia

Impact of OSA on outcomes	Detrimental Impact	Beneficial Impact	Not significant impact
Pulmonary complications	9 studies ^{6,7,10,12–17}	0 studies	6 studies ^{9,18-22}
Desaturation	7 studies ^{14,23–28}	O studies	5 studies 13, 29-33
Difficult intubation	4 studies ³⁴⁻³⁷	1 study ³⁸	-1 study ³⁹
Cardiac complications	1 study ⁷	0 studies	9 studies12-18,20,27
Atrial fibrillation	5 studies ^{9,10,40-42}	0 studies	1 study ²⁷
Combined complications	8 studies ^{7,8,13–15,25,43,44}	0 studies	2 studies ^{21,45}
Resource utilization	11 studies ^{7,8,12–14,25,33,44,46–48}	2 studies ^{9,18}	6 studies ^{20,27,37,49-51}
Other outcomes	1 study ²⁹	2 studies ^{52,53}	1 study ⁵⁴
Mortality	1 study ¹²	3 studies ^{9,10,55}	9 studies7,15,18-21,27,49,56

AHRQ National Inpatient Sample Database

Approximately two-fold increased risk of major pulmonary complications

Mokhlesi, Chest 2013;144:903

AHRQ National Inpatient Sample Database

Misclassification of OSA status may bias in either direction!

- Inclusion of OSA in the control group will bias toward a null result
- If diagnosis is influenced by severity of comorbid illness, could confound association of OSA with adverse outcomes

Questionnaire Screening for OSA Risk Practical and predictive of complications, but is it biased?

• STOP-Bang

Includes age, sex, BMI, HTN

- Perioperative Sleep Apnea Prediction (PSAP) Score
 Includes age, sex, BMI, HTN, DM
- Score for Perioperative Prediction of OSA (SPOSA)

Includes age, sex, BMI, HTN, DM, ASA score, CAD, HF, AFib,
 HL, chronic lung disease, pulmonary HTN, liver ds, hemiplegia

Chung, Br J Anesth 2012;108:768 Ramachandran, Anesth Analg 2010;110:1007 Shin, BMC Anesthesiology 2017;17:71

Quasi-experimental Studies

Complication rates in 2646 patients with known or suspected OSA by CPAP treatment status: Michigan Surgical Quality Collaborative

Risk-Adjusted Rates of Postoperative Cardiopulmonary Complications for

Treated and Untreated Obstructive Sleep Apnea Patients

<u>Strengths</u>

52 community and academic hospitals Outcomes systematically assessed

<u>Weaknesses</u>

"Suspicion" of OSA not clearly defined Self-report of CPAP use Unknown if used post-op

Quasi-experimental Studies

Complication rates in 4211 patients with PSGdocumented OSA and matched controls

Outcomes Cardiac arrest ACS Stroke Atrial fib/flutter

ARDS Respiratory failure Pneumonia

Cardiovascular Complications

Respiratory Complications

Strengths Definitive diagnosis of OSA

Weaknesses Outcomes use ICD codes Diagnosis of OSA pre-surgery as a proxy for OSA treatment Could referral for OSA evaluation be a result of perioperative complications? Does OSA cause the observed increase in perioperative complications?

Does OSA cause the observed increase in perioperative complications?

Does OSA cause the observed increase in perioperative complications?

Rationale for a Clinical Trial in Perioperative Sleep Medicine

- OSA is associated with increased perioperative cardiopulmonary complications
- The population exposed to OSA in the perioperative period is very large
- We don't know whether OSA causes these complications or whether treatment of OSA reduces the risk of complications

Sample Size Estimates

50% reduced risk

25% reduced risk

Practical Barriers to RCT

- Short time frame from pre-op evaluation to surgery
 - Is recruitment feasible?
 - Are screening and diagnosis feasible?
 - Is treatment feasible?
- Disruption of surgical schedules
- Lack of patient interest

Ethical Barriers to RCT

 Effective OSA treatments are available: do all team members and patients have equipoise such that it is ethical to randomize to no treatment?

American Society of Anesthesiologists Practice Guidelines for Perioperative Management of OSA

- Pre-op evaluation for possible OSA
- Consider CPAP pre-, intra- and post-operatively
- Consider use of local or regional anesthesia where feasible
- Extubation while awake for patients receiving general endotracheal anesthesia
- Non-supine positioning when possible
- Routine postoperative oxygen supplementation
- Minimize opioid analgesic use
- Increased intensity of postoperative monitoring

Clinical Implementation Study

American Academy of Pediatrics Guidelines (1992)

- Supine positioning
- No soft bedding
- No bed-sharing

DHHS Back to Sleep Campaign (1994)

Pragmatic (adjective):

Dealing with things sensibly and realistically... (Oxford Dictionary)

What is a Pragmatic Clinical Trial?

Explanatory

- Test efficacy
- Understand biology

 Often placebo control
- Controlled conditions
 - Rigorous exclusion criteria
 - Protocolized intervention
 - o Intensive adherence promotion
- Individual randomization

Pragmatic

- Test effectiveness
- Inform clinical care
 - o Usual care control
- "Real-world" conditions
 - Include any patients who would be targeted in clinical practice
 - Flexibility in administration of intervention
 - \circ $\,$ Adherence as per usual care
- Cluster randomization common

PRECIS-2 Tool

What is the intervention of interest?

- Provider awareness
- Intensive monitoring
- Non-specific interventions
 - Type of anesthesia, analgesia, positioning
- CPAP
 - \circ In whom?
 - Pre-op? For how long?
 - Post-op? In hospital only or out of hospital?
- Hybrid: awareness for all, CPAP only for those at high risk of complications?

All patients undergoing surgery? Specific surgery types? Patients at very high risk of complications?

Hypercapnia May Identify a High Risk Group

Adjusted Risk of Postoperative Outcomes in Patients With Definite OHS, Possible OHS, and Overlap Syndrome Versus Patients With OSA

Postoperative Outcome	Hypercapnic OSA (n $=$ 194)	OSA (n = 325)	OR (95% CI)	P Value
Respiratory failure	39 (21)	8 (2)	10.9 (3.7-32.3)	< .0001
Heart failure	15 (8)	0	5.4 (1.9-15.7)	.002
Prolonged intubation	24 (13)	12 (4)	3.1 (0.6-15.3)	.2
Reintubation	12 (6)	5 (2)	1.7 (0.2-13.4)	.6
Tracheostomy	4 (2)	3(1)	3.8 (1.7-8.6)	.002
ICU transfer	41 (21)	19 (6)	10.9 (3.7-32.3)	< .0001
Death at 30 d	2 (1)	0	^a	
Death at 1 y	10 (5)	2 (0.6)	0.9 (0.1-7.5)	.9

Only 500 patients needed to detect a 50% decrease in respiratory failure with 90% power

Multiple centers Mix of community, academic, public hospitals

Standardized monitoring programs for perioperative complications (NSQIP, VASQIP) make this very pragmatic Relevance to consumers:

- Patients: death, respiratory failure, MI
- Policy makers: LOS, ICU days

Problem Domains for Pragmatic Trial in Perioperative Sleep Apnea Treatment

Recruitment

How are participants recruited into the trial?

- Recruit from usual patient care sites
 - pre-op evaluation clinic
- Recruitment by providers at those sites, rather than dedicated study personnel
- Recruitment as part of usual care, rather than a separate contact for recruitment
- Avoid advertisements, incentives, that would not be part of usual care

A pragmatic approach, but not a pragmatic result!

O'Gorman, Chest 2013;144:72

Possible solution: Treat organization of care as the intervention of interest

Hypothesis:

Implementation of ASA guidelines for perioperative assessment for and management of OSA will reduce the rate of perioperative complications

Cluster Randomization Designs

Cluster exposed to intervention

Cluster unexposed to intervention (control)

Cluster in transition period

(a) Parallel cluster study

Time

(b) Parallel cluster study with a baseline period

(d) Stepped wedge study including transition period

Time

Design Benefits

- Organization: Incorporates intervention "into the usual organization of care for the condition of interest, using no more than the existing healthcare staff and resources in that setting."
- Recruitment: All patients recruited as a matter of usual care, ensuring high "participation" rate
- Reduces risk of "contamination" of control condition
- Intervention and adherence: may be flexible, but whatever is done for the study will be the *de facto* local standard of care

Flexibility in Intervention Delivery

- Protocolized CPAP administration
 - Technical training requirements of providers
 - Specified device, interface, titration
 - Uniform patient education
 - Specified time interval for initiation and use

ore pragmatic		
More	┥	2

- General guidelines
 - Staff based on local training and availability
 - Variable timing

Important Design Issues

- What is the target population?
- What tool to screen for OSA? (Questionnaire, HSAT)
- Will CPAP be a part of the intervention?
 - Who gets CPAP? Based on AHI or other criteria?
 - Timing of CPAP? If pre-op, for how long?
 - Administered by whom?
- What non-PAP interventions?
 - o Intraoperative: anesthetic technique, volume status
 - Postoperative: monitoring, oxygen, analgesia, positioning, fluid
- How will providers be made aware of OSA or OSA risk?
 - Surgeon, anesthesiologist, PACU staff, ward nurses, respiratory therapy
 - How will they be educated in best perioperative care of OSA patients?