Postoperative Monitoring: The Good, Bad and Useless

Satya Krishna Ramachandran MD FRCA CCT DABA Vice Chair of Anesthesiology for Quality, Safety and Innovation BIDMC

Learning Objectives

- 1. Critically evaluate the reasons for monitoring patients
- 2. Discuss important studies relating to monitoring and clinical outcome prediction
- 3. Evaluate the accuracy of prediction of state change in sleep apnea monitoring and potential scientific impact.

- 1. Because it is medico-legally mandatory i.e., SOC?
- 2. Because it makes sense?
- 3. Because it means something about the organ being monitored?
- 4. Because monitoring changes outcomes?

1. Because it is medico-legally mandatory - i.e., SOC?

Table 3. Consultant A	American Society of	Anesth	nesiologi	sts Membe	rship Survey	Sumn	nary		
		Con	sultants	ts Percentage Response Membership Percentage Response			Response		
Intervention or Linkage	Outcome	N	Agree (%)	Disagree (%)	Don't Know (%)	N	Agree (%)	Disagree (%)	Don't Know (%)
Continual assessment of airway patency, respiratory rate and SpO ₂	t Should be done Detects respiratory complications	55 55	98.2 98.2	1.8 1.8	0.0 0.0	211 211	100.0 98.1	0.0 0.0	0.0 1.9
_	Reduces adverse outcomes	55	87.3	1.8	10.9	211	92.4	1.0	6.7

1. Because it is medico-legally mandatory - i.e., SOC?

Wrongful Death - Medical Malpractice - Settlement Amount: Confidential

Deceased sustained a severe global brain injury resulting from oxygen deprivation arising from the hospital's negligent failure to monitor the patient's blood oxygen level and to hook the patient up to a CPAP machine before sleeping, after the patient had undergone successful gastric bypass surgery. Patient had a previous medical history of moderate obstructive sleep apnea.

Established written hospital policies required that all post-operative patients with a known diagnosis of obstructive sleep apnea receive monitoring of blood oxygenation with continuous pulse oximetry. The patient required the use of a CPAP machine at bedtime or during daytime naps.

As a direct result of the hospital's failure to adhere to its written monitoring guidelines, the deceased was found unresponsive, cyanotic and not breathing at 5:15 p.m. by her surgeon who was making rounds. After testing, it was determined that the likely cause of death was obstructive sleep apnea.

The Decedent was survived by two sisters and two brothers.

1. Because it is medico-legally mandatory - i.e., SOC?

2. Because it makes sense?

Table 1. Comparison of Av Respiratory Depression in the	le 1. Comparison of Available Monitoring Modalities for Detection of Opioid-Induced piratory Depression in the Postoperative Period					
Monitoring Modality	Sensitivity *	Specificity	Reliability	Response Time		
PetCO2 (intubated)	High	High	High	Fast		
Sp02 (no 02 supplement)	High	Moderate-High	High	Fast		
PetCO2 (unintubated)	High	Moderate-High ⁵	Moderate	Fast		
PaCO2	High	High	High	Slow		
P,CO2	High	Moderate	High	Slow		
PECO2	Moderate	High	Low-Moderate [‡]	Medium		
Sp02 (with 02 supplement)	Moderate	Moderate	High	Slow		
Clinical assessment (skilled clini- cian)	Moderate	Moderate-High	Moderate	Slow		
Respiratory rate (newer technol- ogy)	Moderate	Moderate [†]	Moderate	Medium		
Tidal volume (unintubated)	Moderate	Moderate	Low	Medium		
Chest wall impedance (for respir. rate)	Low-Moderate	Low [†]	Low	Medium		
Clinical assessment (less skilled clinician)	Low-Moderate	Low-Moderate	Low-Moderate	Slow		

1. Because it is medico-legally mandatory - i.e., SOC?

- 2. Because it makes sense?
- 3. Because it means something about the organ being monitored?

Postoperative SDB course

Relationship Between SDB & Postoperative Respiratory Failure

- 1. Because it is medico-legally mandatory i.e., SOC?
- 2. Because it makes sense?
- 3. Because it means something about the organ being monitored?
- 4. Because monitoring changes outcomes?

The Official Journal of the Anesthesia Patient Safety Foundation

NEWSLETTER

Fall 2011

In this issue:

No Patient Shall Be Harmed By Opioid-Induced Respiratory Depression

www.apsLorg

A Tribute to Ellison C. (Jeep) Pierce, Jr., MD

Dear SIRS: Reusable Anesthesia Breathing Circuits Considered

Threshold Monitoring, Alarm Fatigue, and the Patterns of Unexpected Hospital Death

Dr. John Walsh Receives MGH Annual Cooper Patient Safety Award

Methadone

"No Patient Shall Be Harmed By Opioid-Induced Respiratory Depression"

[Proceedings of "Essential Monitoring Strategies to Detect Clinically Significant Drug-Induced Respiratory Depression in the Postoperative Period" Conference]

> Matthew B. Weinger, MD, and Lorri A. Lee, MD, for the Anesthesia Patient Safety Foundation

The APSF believes that clinically significant, drug-induced respiratory depression in the postoperative period remains a serious patient safety risk that continues to be associated with significant morbidity and mortality since it was first addressed by the APSF in 2006.¹ The APSF envisions that *"no patient shall be harmed by opioid-induced respiratory depression in the postoperative period,"* and convened the second multidisciplinary conference on this serious patient safety issue in June of this year in Phoenix, AZ, with 136 stakeholders in attendance. The conference addressed "Essential Monitoring Strategies to Detect Clinically Significant Drug-Induced Respiratory Depression in the Postoperative Period."

Does Monitoring Change Outcomes?

Two step rule:

- 1. Monitoring changes treatment
- 2. Treatment changes outcomes

Four Potential Ways to Use Monitoring Data

- By classifying <u>real-time step change in state of health</u> (physiological to pathological state)
- By <u>predicting real-time step change in state of health</u> (physiological to pathological state)
- By classifying <u>subtle, transient change in physiological state</u>, where the relationship with specific disease process is known
- By predicting <u>subtle, transient change in physiological state</u>, where the relationship with specific disease process is known

Four Potential Ways to Use Monitoring Data

• By classifying <u>real-time step change in state of health</u> (physiological to pathological state)

Capturing Real-Time (Retrospective) Step Change

Threshold Based Surveillance System

RESEARCH ARTICLE

Retrospective observational evaluation of postoperative oxygen saturation levels and associated postoperative respiratory complications and hospital resource utilization

Satya Krishna Ramachandran¹*, Aleda Thompson², Jaideep J. Pandit³, Scott Devine⁴, Amy M. Shanks²

Early Postoperative (PACU) Pulse Oximetry and Outcomes?

- Derive the best measures of desaturation:
 - Consider the measures as surrogates of a certain clinical phenotype
- Several dimensions of desaturation
 - Depth nadir
 - Duration under threshold? Under median?
 - Area under the curve
 - Oxygen therapy?

Central tendency measure. The median SpO_2 value for each sliding window (5 minute window, q1-minute) was first calculated. On a per patient basis, the median of all sliding window medians was defined as the median SpO_2 value in PACU. All median data were transformed into a dichotomous measure of central tendency of desaturation by determining the population spread of these data, and identifying the 10th centile of desaturation medians, since lower median values likely signify greater respiratory risk. For this dataset, the median SpO_2 threshold was defined as <94% using this methodology.

Duration of desaturation. The cumulative time in minutes below median SpO₂, expressed as number of minutes per hour of PACU SpO₂ monitoring was calculated. All duration data were transformed into a dichotomous measure of duration of desaturation by determining the population spread of these data, and identifying the 90th centile of desaturation duration, since longer desaturation periods likely signify greater respiratory risk. For this dataset, the desaturation duration threshold was defined as the cumulative time ≥ 18 minutes per hour of SpO2 <94% using this methodology.

Nadir desaturation measure. The minimum SpO_2 in PACU was chosen as the lowest value either documented as a manual entry by PACU nurse during room air exposure for five minutes or captured during all continuous monitoring periods starting from the first recording of SpO_2 through to PACU discharge. All nadir desaturation data were transformed into a dichotomous measure of nadir desaturation by determining the population spread of these data, and identifying the 10th centile of each patient's desaturation nadirs, since lower nadir values likely signify greater respiratory risk. For this dataset, the nadir SpO_2 threshold was derived as <89% using this methodology.

Duration of oxygen therapy in PACU. As PACU nurses were expected to treat desaturation with patient arousal and supplemental oxygen therapy, we assumed that longer oxygen exposure times were at least in part, indicative of ongoing desaturation issues needing this intervention. This variable was derived as the fraction of PACU time that the patient had documented oxygen therapy. The derived fraction was converted into an ordinal variable with <25%, 25–49%, 50–74% and 75–100% forming the categories that describe longer oxygen requirements in PACU. For this dataset, these durations were derived as <30 min, 31–60 min, 61–90 min and >90 min using this methodology.

Table 6. Secondary outcomes on matched dataset.

	Oxygen treatment duration>30 minutes (N = 18,677)	Oxygen treatment duration≤30 minutes (N = 18,677)	p-value
Total Charges			
Charge (median, 25 th , 75 th centile)	12,532 [8,683 to 21,690]	10,874 [7,661 to 18,190]	<0.001
Day of Surgery Charges			
Charge (median, 25 th , 75 th centile)	9,749 [5,001 to 15,076]	8,672 [4,623 to 13,370]	<0.001
Surgery Charges			
Charge (median, 25 th , 75 th centile)	6,075 [0 to 10,508]	6,205 [0 to 10,162]	<0.001
Respiratory Charges			
Charge (median, 25 th , 75 th centile)	0 [0 to 370]	0 [0 to 125]	<0.001
Hospital Length of Stay (median, 25 th , 75 th centile)	0 [0 to 1]	0 [0 to 1]	<0.001
Early PRC			
Reintubation [n(%)]	34 (0)	15 (0)	0.007
Ventilatory support [n(%)]	551 (3)	131 (1)	<0.001

All data are reported as either frequency (percent) or median [25th percentile to 75th percentile], as appropriate.

Four Potential Ways to Use Monitoring Data

- By classifying <u>real-time step change in state of health</u> (physiological to pathological state)
- By <u>predicting real-time step change in state of health</u> (physiological to pathological state)

Predicting Future Step Change Integrated Monitoring System (IMS)

- An IMS (BioSign; OBS Medical, Carmel, Indiana) used heart rate, blood pressure, respiratory rate, and peripheral oxygen saturation by pulse oximetry to develop a single neural networked signal, or BioSign INDEX (BSI)
- Data were analyzed for cardiorespiratory instability according to BSI trigger value and local MET activation criteria.
- Tarassenko and Pinsky

What Did IMS Change?

- 18, 248 hours of continuous monitoring
- 111 MET activation criteria events caused by cardiorespiratory instability in 59 patients
 - All MET events were detected by BSI in advance (mean, 6.3 hours) in a bimodal distribution (6 hours and 45 minutes; 100% sensitivity)
 - But MET activation for this cause occurred in only 7 patients (6% PPV for MET activation; NNT/NNP not calculated)

Rapid Response Teams

A Systematic Review and Meta-analysis

Paul S. Chan, MD, MSc; Renuka Jain, MD; Brahmajee K. Nallmothu, MD, MPH; Robert A. Berg, MD; Comilla Sasson, MD, MS

	Control Group		Intervention Group					
	Patients, No.	Deaths, No.	Patients, No.	Deaths, No.	Weight, %	RR (95% CI)	Lower After RRT	Higher After RRT
Adult Studies								
Bristow et al (hospital 1 vs 2) ²⁰	13059	66	18338	69	7.29	0.88 (0.62-1.23)		
Bristow et al (hospital 1 vs 3)20	19545	99	18338	69	7.64	1.00 (0.73-1.37)		_
Buist et al ²⁸	19317	73	22847	47	6.97	0.50 (0.35-0.73)		
Bellomo et al ²⁷	21 090	63	20921	22	5.71	0.35 (0.22-0.57)	← ◆ ──	
Kenward et al ³³	53 500	139	53 500	128	9.71	0.92 (0.72-1.17)	_ 	
DeVita et al ²⁹	143776	930	55248	290	8.54	0.81 (0.71-0.93)		
Hillman et al ³¹	56756	93	68376	90	9.28	0.94 (0.79-1.13)		
Jones et al ³⁰	16246	66	104 001	198	8.00	0.47 (0.35-0.62)		
Dacey et al ¹³	5667	44	17 090	52	6.57	0.39 (0.26-0.58)	\	
Baxter et al ¹²	7820	43	11271	38	6.20	0.61 (0.40-0.95)		
Chan et al ⁹	24193	147	24978	77	6.58	0.59 (0.40-0.89)	\	
Overall Adult (12=80.5%, P<.001)	380 969	1763	414 908	1080	82.49	0.66 (0.54-0.80)	\Leftrightarrow	
Pediatric Studies								
Brilli et al ³⁶	16255	25	9615	6	0.25	0.41 (0.00-0.86)	← ◆ ──	
Sharek et al ³⁵	22037	53	7257	5	2.50	0.29 (0.10-0.65)	<♦	
Zenker et al ¹⁴	22561	181	11682	60	7.72	0.64 (0.47-0.87)	_	
Hunt et al ³⁸	7504	16	7503	8	2.45	0.49 (0.18-1.20)	< ◆	
Tibballs and Kinney et al ³⁷	104780	20	138 424	24	4.58	0.91 (0.50-1.64)		
Overall Pediatric ($I^2 = 10.2\%$, $P = .35$)	173 137	295	174481	103	17.51*	0.62 (0.46-0.84)		
Overall (/2=73.9%, P<.001)	554 106	2058	589389	1183	100.00	0.65 (0.55-0.77)	\diamond	

0.5 1 RR (95% CI) ż

4

0.25

Rapid Response Teams

A Systematic Review and Meta-analysis

Paul S. Chan, MD, MSc; Renuka Jain, MD; Brahmajee K. Nallmothu, MD, MPH; Robert A. Berg, MD; Comilla Sasson, MD, MS

	Control	Control Group		Intervention Group			
	Patients, No.	Deaths, No.	Patients, No.	Deaths, No.	Weight, %	RR (95% CI)	Lower Higher After RRT After RRT
Adult Studies							
Bristow et al (hospital 1 vs 2) ²⁰	13059	240	18338	243	7.17	0.93 (0.77-1.12)	_ \ _
Bristow et al (hospital 1 vs 3)20	19545	295	18338	243	7.28	1.20 (1.00-1.43)	→
Buist et al ²⁸	19317	380	22847	393	7.31	0.87 (0.71-1.01)	
Bellomo et al ²⁷	21 090	302	20921	222	8.51	0.74 (0.70-0.79)	•
Kenward et al ³³	53 500	1070	53 500	1054	8.36	0.99 (0.91-1.07)	+
Priestley et al ³⁴	1336	76	1456	73	3.54	0.52 (0.32-0.85)	\
Hillman et al ³¹	56756	67	68376	72	6.85	1.03 (0.84-1.28)	_
Dacey et al ¹³	5667	123	17090	398	6.96	1.07 (0.88-1.32)	- -
Jones et al ³⁰	25334	873	100243	4070	8.43	1.18 (1.10-1.27)	•
Baxter et al ¹²	7820	279	11271	400	7.65	0.99 (0.86-1.16)	
Chan et al ⁹	24 193	780	24978	773	7.56	0.95 (0.81-1.11)	_ _
Overall Adult (12=91.4%, P<.001)	247617	4485	357 358	7941	79.62	0.96 (0.84-1.09)	\diamond
Pediatric Studies							
Brilli et al ³⁶	16255	11	9615	3	0.10	0.55 (0.00-2.10)	< ◆
Sharek et al ³⁵	22 037	547	7257	158	7.62	0.82 (0.70-0.95)	- •
Zenker et al ¹⁴	22561	97	11682	53	4.86	1.05 (0.73-1.50)	\
Tibballs and Kinney et al ³⁷	104780	459	138424	398	7.80	0.65 (0.57-0.75)	→
Overall Pediatric ($I^2 = 66.0\%$, $P = .03$)	165633	1114	166 978	612	20.38	0.79 (0.63-0.98)	\diamond
Overall (12=90.3%, P<.001)	413 250	5599	524 336	8553	100.00	0.92 (0.82-1.04)	

0.5

0.25

RR (95% CI)

1

ż

Can Monitoring Harm?

A frequent and persistent problem

The Joint Commission's Sentinel Event database* includes reports of 98 alarmrelated events between January 2009 and June 2012. Of the 98 reported events, 80 resulted in death, 13 in permanent loss of function, and five in unexpected additional care or extended stay. Common injuries or deaths related to alarms included those from falls, delays in treatment, ventilator use and medication errors; all were traced back to alarm system issues. Alarm-related events are recognized as underreported and occur in all health care settings. Ninety-four of the reported events occurred in hospitals, with the majority of those events occurring in telemetry, intensive care,

> In addition, the U.S. Food and Drug Administration's (FDA) Manufacturer and User Facility Device Experience (MAUDE) database reveals that 566 alarm-related patient deaths were reported between January 2005 and June 2010, a figure that is considered by industry experts to underrepresent the actual number of incidents.

Countering Alarm Fatigue vs. System Failures

• Countered by widening thresholds and introducing delays

SpO2 threshold of 80% alerts in 0.67% of patients
 Vs. 6.25% alert rate at a SpO2 threshold of 90%

 \circ The PPV of IMS is <10% despite extending delay to 4 out of 5 min period.

System failures are extensive/common
 <u>https://www.ecri.org/Documents/PA_PSRS/2008.03_Suppleme_nt.pdf</u>

Four Potential Ways to Use Monitoring Data

- By classifying <u>real-time step change in state of health</u> (physiological to pathological state)
- By <u>predicting real-time step change in state of health</u> (physiological to pathological state)
- By classifying <u>subtle, transient change in physiological state</u>, where the relationship with specific disease process is known

OSA and Pulse Oximetry

- Episodic airway obstruction with 'subtle' desaturation epochs
 - Reproducible
 - Exacerbated by exposure to anesthesia and surgery
- Public health implications
 - Disease and mortality burden
 - Costs
- Treatment modalities unsatisfactory event insensitive?
 - CPAP
 - Weight loss
 - Surgery

Change in HRV - Sympathovagal Control Pattern

- Case control retrospective design
 - 20 patients with early post-extubation respiratory/airway failure
 - 20 matched controls for age decile, gender, AHI, surgical specialty
- PSG data from formal in-lab study within 1 year of event (before or after)
- HRV metrics derived from whole night ECG analysis
- Time series data split into 1-min segments, classified under sleep stages, OSA vs CSA events and cumulative distribution

Sympathovagal Balance Across Sleep Stages

(b) Box plots for LF_n of the spectral oscillations for RR intervals during undisturbed in stages 0 (upper left), 2 (upper right), 3 (lower left), and 5 (lower right)

REM related Vagal Predominance in Adverse Outcome

(c) Box plots for HF_n of the spectral oscillations for RR intervals during undisturbed in stages 0 (upper left), 2 (upper right), 3 (lower left), and 5 (lower right)

Four Potential Ways to Use Monitoring Data

- By classifying <u>real-time step change in state of health</u> (physiological to pathological state)
- By <u>predicting real-time step change in state of health</u> (physiological to pathological state)
- By classifying <u>subtle, transient change in physiological state</u>, where the relationship with specific disease process is known
- By predicting <u>subtle, transient change in physiological state</u>, where the relationship with specific disease process is known

Why Predict SpO₂ Signal Values in OSA?

- Airway events precede desaturation in a dose dependent manner
- Some evidence that deep desaturation episodes carry greater threat
 - Ventricular arrhythmias
 - Some evidence that treatment reduces arrhythmia risk
- Finite inputs for single output (MISO modeling)
 - Previous SpO2 values and system tendency to desaturation
 - Sleep state
 - Medications

Oxygen treatment ENHANCED the ability of the model to predict SpO2 values 60-seconds ahead of time

Fig. 2 Summary receiver operating characteristic *curves* for accuracy of prediction of critical desaturation events over the two 20s and 60s predictions across oxygen treatment groups

Apnea Prediction?

Algorithm (wit	th Two Classif	ication Metho	ds) and Two	Previous Stud	lies
Algorithm	TPR (%)	TNR (%)	PPV (%)	ACC (%)	AUC (%)
AICPV	85.5	79.8	72.2	82.0	82.7
AICPV w/ GMM	94.7	90.3	88.2	92.2	92.5
Várady et al.	63.5	66.6	35.0	66.0	65.1
Fontenla-Romero et al.	70.2	64.5	13.6	64.9	67.3

Summary

- 1. Critically evaluated the reasons for monitoring patients
- 2. Challenging to link monitoring with clinical outcomes
- 3. Prediction of events may have potential clinical impact.