

7th Annual Meeting • October 19-20, 2017 • Boston, MA

Pain and analgesia in the postoperative patient with obstructive sleep apnea

Anthony G Doufas, MD, PhD

Professor of Anesthesiology, Perioperative and Pain Medicine Stanford University School of Medicine

DISCLOSURE I have no financial relationships with commercial support to disclose.

Learning objectives

At the conclusion of this activity, participants should be able to:

Identify hyperalgesic phenotypes in obstructive sleep apnea Evaluate the risk for altered pain perception in patients with OSA Determine the risk for opioid-induced respiratory depression Select appropriate analgesic regimens in the context of OSA

Is obstructive sleep apnea hyperalgesic?

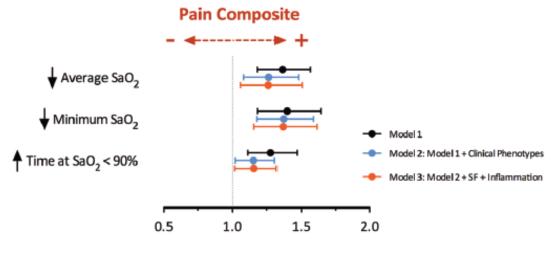
Nocturnal intermittent hypoxia

Sleep deprivation; sleep disruption

Excessive daytime sleepiness

Systemic inflammation

Comorbid insomnia


Intermittent hypoxia

Cleveland Family Study

- Family-based longitudinal cohort
- 634 OSA and controls
- 4 types of pain

Nocturnal Intermittent Hypoxia Is Independently Associated with Pain in Subjects Suffering from Sleep-disordered Breathing

Anthony G. Doufas, M.D., Ph.D.,* Lu Tian, Ph.D., + Margaret Frances Davies, Ph.D., + Simon C. Warby, Ph.D.§

Odds Ratio (95% confidence intervals)

A decrease in the minimum nocturnal SpO_2 from 92 to 75% almost doubled the odds for reporting pain

Sleep deprivation and sleep disruption

Sleep deprivation promotes inflammation¹ and spontaneous pain² in healthy volunteers

Sleep disruption decreased central pain inhibition by 60% in healthy women³

CPAP (6-8 weeks) reduced sensitivity to heat pain by 40-100% in patients with severe OSA⁴

¹Haack, Pain, 2007

Excessive daytime sleepiness

"Sleepy" (MSLT 4.8 vs 12.6 min) pain-free volunteers have 40% lower pain thresholds than the non-sleepy ones¹

In "sleepy" volunteers, an extended sleep opportunity increased pain thresholds by 25%²

Physiological sleepiness diminished the acute anti-nociceptive effect of codeine in healthy volunteers³

Systemic inflammation

OSA is a chronic inflammatory state

Both sleep fragmentation and intermittent hypoxia can trigger systemic inflammation via:

• Oxidative stress and sympathetic activation¹

Cleveland Family Study

• Soluble IL-6 receptor levels were positively associated with nocturnal hypoxemia and arousal index²

Insomnia comorbid with OSA

OSA and insomnia co-occur to a high degree¹:

- 58% of OSA patients complain about insomnia
- 67% of patients with insomnia are also diagnosed with OSA

Experimental pain models have demonstrated:

- Insomnia decreased central pain inhibition²
- Insomnia and chronic pain synergistically increase pain³

Opioid analgesia in patients with OSA

Animal and ex vivo models

Pediatric populations

Adult populations

IH enhances opioid sensitivity in animals

Recurrent hypoxemia increased binding in the mu-opioid receptors (MOR) in rat's brainstem¹

• Up-regulation of MOR?

Recurrent hypoxemia during development increased sensitivity to the respiratory effects of fentanyl in rats²

Tonsillectomy in children for OSA treatment

Nocturnal hypoxemia reduced morphine requirement for postoperative analgesia¹

• Nadir nocturnal SpO₂< 85%, decreased the dose of morphine by half²

Increased morphine requirement postoperatively in OSA³

• Higher incidence of respiratory complications

Racial disparity in the postoperative pain in OSA⁴

• Increased pain and morphine requirement in AA, compared with Caucasian children with OSA

Adults with OSA and nocturnal hypoxemia

Nocturnal hypoxemia (lower nadir SpO₂) was associated with higher analgesic potency of remifentanil in experimental pain¹

Nocturnal hypoxemia (fraction of sleep time with SpO₂ < 90%) was associated with decreased morphine requirement for postoperative analgesia in bariatric patients²

Pain and opioid analgesic effect in OSA

Trials		N	Exposure	Outcome	
				Pain	Analgesic Dose
EXPERIMENTAL	Khalid 2011	12	OSA diagnosis	1	
	Doufas 2013	43	Nadir SpO ₂	•	•
PROSPECTIVE	Brown 2006	22	Nadir SpO ₂	-	•
	Sanders 2006	82	Respiratory distress index	-	^
	Sadhasivam 2012	194	OSA diagnosis	1	^
RETROSPECTIVE	Brown 2004	46	Nadir SpO ₂	-	•
	Doufas 2013	638	Nocturnal SpO ₂	1	-
	Turan 2015	218	Time SpO ₂ < 90%	-	\checkmark

Opioids and severe respiratory depression

ADULTS

Death (55%) or permanent brain damage (22%), among 92 claims in the context of opioid analgesia¹

• Established diagnosis or high risk for OSA (25%); obesity (66%); somnolence before the event (62%)

Congestive heart failure, postoperative ARF, OSA, and DM, prevalent among patients with lifethreatening respiratory events²

OSA and respiratory events in PACU predict delayed respiratory depression³

• Chronic⁴ and postoperative³ use of benzodiazepines also predict respiratory depression

CHILDREN

Death or neurologic injury post-tonsillectomy: 57% were at risk for OSA, based on ASA criteria⁵

• In at-risk-for-OSA children, adverse event was predominantly attributed to apnea than hemorrhage

³Weingarten, Anesth Analg, 2015 ⁴Ramachandran, Anesth Analg, 2017

Opioids worsen sleep-disordered breathing

Sleep-disordered breathing and oxygenation worsen after surgery in both OSA^{1,2} and non-OSA³ patients

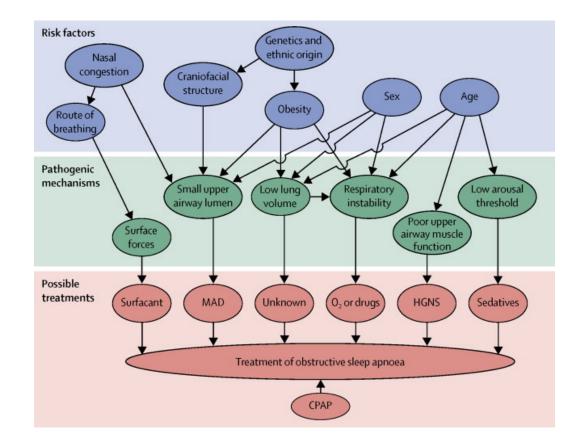
- Large variation of effect¹
- For OSA patients, age, preoperative AHI, and opioid dose were major predictors²

Among 833 patients recovering from non-cardiac surgery, hypoxemia is common and persistent⁴

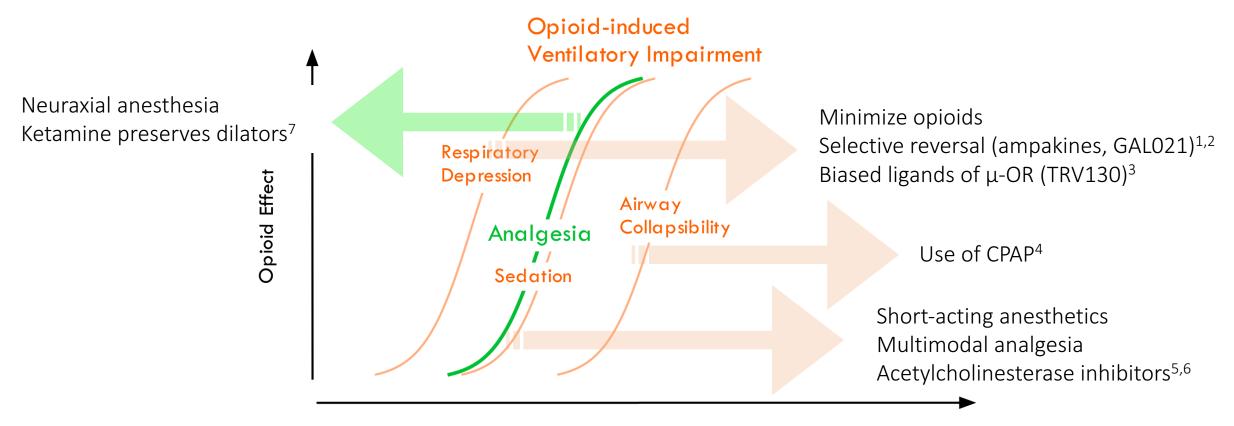
- 21% averaged at least 10 min per hour with $SpO_2 < 90\%$
- No difference between the use of long- or short-acting opioids⁵
- STOP-Bang questionnaire does not predict hypoxemia⁶

¹Chung, Anesthesiology, 2014 ²Chung, Anesthesiology, 2014 ³Chung, Anesth Analg, 2015 ⁴Sun, Anesth Analg, 2015 ⁵Belcher, Anesth Analg, 2016 ⁶Khanna, Anesth Analg, 2016

Respiratory effects of opioids in OSA patients


A 0.5 mcg/kg bolus of fentanyl in children under general anesthesia led to apnea in 46% of OSA vs 5% of controls¹

Remifentanil infusion (0.075 mcg/kg/min) during a sleep study resulted in dramatic increase of central apnea in 4 out of 10 adults with OSA²


• "Opioid-emergent central sleep apnea"

Variable effects of opioids on respiration in the context of OSA

Variability in OSA pathogenic mechanisms

Mitigation of opioid side effects

Dose / Effect Site Concentration of Opioids

¹Oertel, Clin Pharmacol Ther, 2010 ²Roozekrans, Anesthesiology, 2014 ³Soergel, Pain, 2014 ⁴Liao, Anesthesiology, 2013
⁵Meuret, Anesthesiology, 2000
⁶Hedner, Am J Respir Crit Care Med, 2003

⁷Eikermann, Anesthesiology, 2012

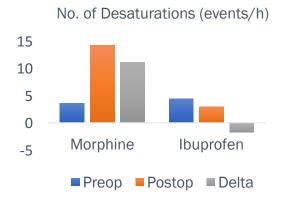
Neuraxial & regional anesthesia in OSA

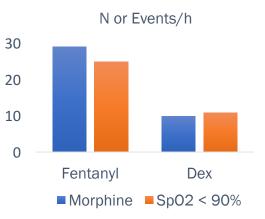
Analysis of more than 1,000,000 cases of total hip and knee arthroplasties between 2006 and 2013¹:

- Increase in the use of peripheral nerve block from 9 to 15%
- Decrease in the daily prescription of opioids by 17%

Among 30,024 patients with OSA undergoing total joint arthroplasty²

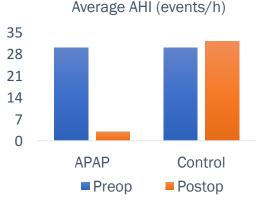
- 11% neuraxial, 15% combined and 74% general anesthesia
- Less complications with neuraxial vs general anesthesia; OR: 0.83 (95% CI: 0.74 0.93)

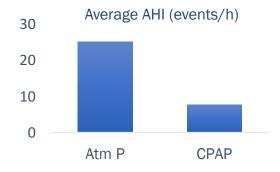

Opioid-sparing post-tonsillectomy in OSA


Postoperative ibuprofen is effective analgesic¹

- Randomized to morphine (N=30, 0.1 0.35 mg/kg, Q 4h), or ibuprofen (N=26, 10 mg/kg, Q 6h)
- No difference in pain; decreased number of desaturations events with ibuprofen

- Randomized to Dex (N=61, 2 mcg/kg bolus, 0.7 mcg/kg/min), or Fentanyl (N=61, a bolus of 1 mcg/kg)
- Decreased postoperative opioid analgesia and desaturation events in Dex vs Fentanyl groups
- Maximum pain was higher in the F than Dex groups (5 vs 3, OPS)


Support airway patency postoperatively


Postoperative positive airway pressure (PAP)¹

- 177 patients were randomized to receive Auto-titrated PAP or routine care for 5 postoperative nights
- APAP decreased AHI by 89% on 3rd postoperative night

CPAP early after bariatric surgery²

- Crossover randomization of 38 bariatric (BMI: 46 kg/m²) patients to atmospheric pressure (AP), or CPAP in PACU
- CPAP treatment decreased AHI during opioid analgesia in the PACU by 69%
- Total morphine-equivalent dose administered 2.9 vs 2.5 mg

Summary

Several OSA-related phenotypes might enhance pain perception

Nocturnal intermittent hypoxemia in OSA might be associated with reduced requirement for opioid analgesia

Postoperative opioids may aggravate sleep-disordered breathing

• A direct link with life-threatening respiratory events is yet to be demonstrated

Mitigating respiratory depression during postoperative analgesia

• Maintaining arousal responses, minimizing opioids, and/or supporting the airway via mechanical means