> Sleep Evaluation in Newly Discovered OSA In and After Hospital

Clete A. Kushida, M.D., Ph.D.

Professor, Stanford University Medical Center Medical Director, Stanford Sleep Medicine Center Director, Stanford Center for Human Sleep Research

- Sleep evaluation in newly discovered OSA in patients <u>during</u> hospitalization
- SleepvalenceationSA inepvaluedts outverbednic OSAAAicplaterationSA inepvaluedts outverbednic
- Manageridence based tools renue used to and after hospitalization
- What else can improve the pretest probability
 What depending SAUTASpitalized patients?

Alzheimer's Disease: OSA

OSA is found in 33-53% of patients with probable Alzheimer's Disease

APOE4 genotype: Risk factor for SDB in the middle-aged Wisconsin Sleep Cohort Study,¹ but not in the elderly Honolulu-Asian Study cohort²

(1) Kadotani H, et al, JAMA 2001; (2) Foley DJ, et al JAMA 2001

Stroke

- Stroke can result in SDB, including central and obstructive apnea and disorders of respiratory control.
- SDB is the most commonly reported disturbance post- stroke, although adults are observed to have a high incidence of periodic breathing and Cheyne-Stokes respiration.
- Patients post stroke have a high OSA prevalence (60-93%). In a meta-analysis of 2343 subjects with ischemic or hemorrhagic stroke or TIA, OSA was present in 72%, with only 7% due to central apnea.

Sleep Med. 2010;6(2):138-9

Cardiovascular Disease

- About 50% of OSA patients are hypertensive, and an estimated 30% of hypertensive patients also have OSA, often undiagnosed.
- OSA was detected in 37% of 450 and 11% of 81 patients with heart failure resulting from systolic dysfunction referred for polysomnography.
- OSA in patients with CAD ranges from 26% to 66%, partially explained by the different AHI cutoff scores.

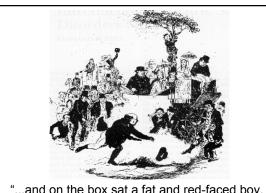
Skretero (p.S., Skep-related braithing disocders as a major cause of essential hypertension: fact or factorn?. Curr Opin keyprin Hypertens. 1798 253-537. Febre CL: Undagence these papera in patient with essential hypertension. An Intern Merch 101 985 150-165. Sho D, Risk factors for central and obstructive sleep apera in 450 mm and women with cogesive head fallure. An A Repp? Ch Care Med. 180 Provember 2019 (Section 2019) (Section 20

- Sleep evaluation in newly discovered OSA in patients <u>during</u> hospitalization
 - Prevalence of OSA in patients with chronic medical conditions
 - What evidence-based tools can be used to evaluate OSA in hospitalized patients?
 - What else can improve the pretest probability for detecting OSA in hospitalized patients?

Pre-Test Probability for Moderate to Severe OSA

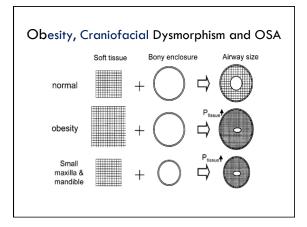
to predict OSA (AHI \ge 15 or \ge 30 events/hour: 93 and 100%, respectively).¹

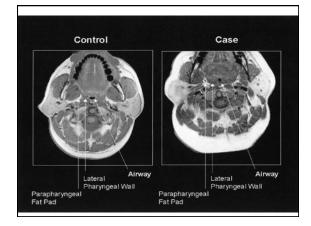
- "The strength of evidence is low that some clinical prediction rules may be useful in the prediction of a diagnosis of OSA." 1
- Age, sex, body mass index, bed partner observation of apnea and pharyngeal examination can be significant predictors of AHI.²
- Trained and experienced sleep physicians are best suited to evaluate and treat OSA patients.


(1) Hoffstein V. Szalai JP. Predictive value of clinical features in diagnosing obstructive sleep apnea. Sleep. 1993 Feb;18(2):118-22. (2) Baik EM, et al. Diagnosis and Treatment of Obstructive Sleep Apnea in Adults. Comparative Effectiveness Review No. 32. AHRQ Publication No. 11:EH/COS2-FR. Rockivel, MO. Agneny for Healthorme Research and Quality, 2011.

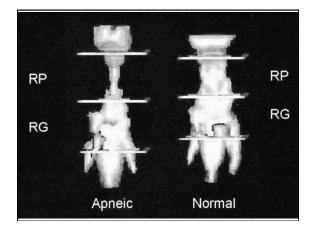
Study		Reference			Bland	Altman			ROC Analysis			
PMID	Index test	test	N	Setting	Metric ^A	Result	Threshold, eve Index	nts/hr PSG	Sensitivity (95% CI)	Specificity (95% CI)	AUC	Quality
Chung, 2008 ³⁶	STOP			Sleep			High vs. low	>15	65.6 (56.4, 73.9) 74.3 (62.4, 84.0) 79.5 (63.5, 90.7)	60 (45.9, 73.0) 53.3 (43.4, 63.0) 48.6 (40.0, 63.0)	0.703	
18431116	STOP-Bang	- PSG	177	lab			High vs. low	>5	83.6 (75.8, 89.7) 92.9 (84.1, 97.6) 100 (91.0, 100.0)	56.4 (42.3, 69.7) 43 (33.5, 52.9) 37 (28.9, 45.6)	0.806	с
Chung, 2008 ⁹⁷	Berlin			Sleep	·		High vs. low	>50	68.9 (59.8, 76.9) 78.6 (67.1, 87.5) 87.2 (72.6, 95.7)	37 (28.9, 45.6) 56.4 (42.3, 69.7) 50.5 (40.6, 62.3) 46.4 (37.9, 55.1)	0.622 0.672 0.668	
18431117	ASA checklist	PSG	211	lab			High vs. low	>5 >15 >30	72.1 (63.3, 79.9) 78.6 (67.1, 87.5) 87.2 (72.6, 95.7)	38.2 (25.4, 52.3) 37.4 (28.2, 47.3) 36.2 (28.2, 44.8)	0.783	в
							23	>5	59 (nd)	69 (nd)		
Kapuniai, 1988 ⁹⁰ 3227223	Apnea score derived from the Hawaii Sleep	PSG	53	Sleep lab			≥2 (no adenoidectomy score) ≥2 (no	>5	70 (nd)	65 (nd)		в
5421225	Questionnaire*						adenoidectomy score)	>10	78 (nd)	67 (nd)		
Netzer, 1999 ⁰⁰							High-risk (high	>5	77 (nd) 86 (nd)	89 (nd) 77 (nd)		
Netzer, 1999** 10507956	Berlin	PSG	100	Home			risk in 2/3 categories) vs.	215	86 (nd) 54 (nd)	97 (nd)	-	С
							low-risk †	-30	17 (nd)	97 (nd)	-	
Sharma, 2006 ¹⁰⁰ 17085831	Berlin Questionnaire, ‡ modified	PSG	104	Sleep lab & Hospital			High risk vs. Iow risk	>5	86 (nd)	95 (nd)		с
Drager, 2010 ¹⁰¹ 20381666	Berlin Questionnaire	PSG	99	Hospital			High risk vs. low risk 10	25	93 (82,98) 49 (36.63)	59 (43,73) 80 (64.90)		A

Study		Reference				ROC Analysis					
PMID	Index test	test	N	Setting	Subgroup	Threshold, events/hr		Sensitivity.	Specificity,	AUC	Qualit
						Index	PSG	% (95% CI)	% (95% Cl)	AUC	_
Crocker, 1990 ¹⁰² 2368960	Statistical model *	PSG	105	Sleep Jab		Probability of OSA >0.15	>15	92 (nd)	51 (nd)		в
Gurubhagavatula, 2001 100	Clinical prediction	PSG	359	Sleep		Upper bound= 0.58 Lower bound= 0.14 ODI threshold= 5.02	≥5	94.1 (nd)	66.7 (nd)		А
11734444	rule,† derived	PSG	359	lab		Upper bound = 0.9 Lower bound = 0.38 ODI threshold = 21	≥30	83.3 (nd)	94.7 (nd)		A
Kushida, 1997 ¹⁰⁴ 9341055	Morphometric model 1	PSG	300	Sleep lab		≥70	25	97.6 (95, 98.9)	100 (92,100)	0.996	С
Onen, 2008 ¹⁰⁵	Observation- based Nocturnal					≥2 snoring episodes or ≥1 apnea episode	AHI≥15	89.7 (82, 97)	81.4 (70,93)		
18775037	Sleep	PSG	115	Hospital		≥5 snoring or ≥1 apnea	AHI≥15	56 (44, 68)	100		в
	(ONSI)§					≥3 snoring or ≥1 apnea	AHI≥15	74 (63, 84)	93 (85,100)		
	Clinical					< 2.5	25	0 (nd)	89 (nd)		
Rodsutti, 2004 ¹⁰⁸ 15283004	prediction rule, ** derived	PSG	243	Sleep lab		2.5 - < 4.2	≥5	44 (nd)	85 (nd)	- 0.789	Α
						≥4.2	≥5	76 (nd)	60 (nd)		
					A#	0.15	≥10	84 (nd)	39 (nd)		0.669 0.7 0.761
	Model #1 11					0.95	≥20	33 (nd)	90 (nď)	0.7	
	model at 11				Men	0.15	≥10				
		-			Women	0.15	210			0.633	
					All	0.20	≥10	96 (nd)	13 (nd)	0.695	-
	Model #2 11					0.95	220	34 (nd)	87 (nd)	0.722	
	Men 0.2 210			0.801							
Rowley, 2000 ¹⁰⁷		- PSG	370	Sleep lab	Women	0.2	≥10			0.626	A
11083602					All	10	≥10	76 (nd)	54 (nd)	0.696	
	Model #3 §§					35	≥20	34 (nd)	89 (nd)	0.733	
	wodel #2 33				Men	10	≥10	0.707			
					Women	10	≥10			0.648	
					AL	0.5	≥10	87 (nd)	35 (nd)		
	Model #4 ***					0.85	220	39 (nd)	93 (nd)	0.757	-
	model #4				Men	0.5	≥10			0.801	
					Women	0.5	≥10			0.611	
Zerah-Lancner, 2000 ¹⁰⁸ 11112139	Based on Pulmonary function data +++	PSG	101	Sleep Lab		0.5	≥15	100 (nd)	84 (nd)		в

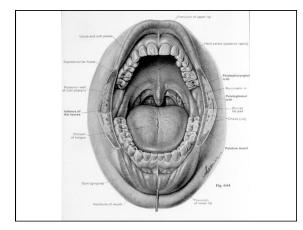

- Sleep evaluation in newly discovered OSA in patients <u>during</u> hospitalization
 - Prevalence of OSA in patients with chronic medical conditions
 - What evidence-based tools can be used to evaluate OSA in hospitalized patients?
 - What else can improve the pretest probability for detecting OSA in hospitalized patients?

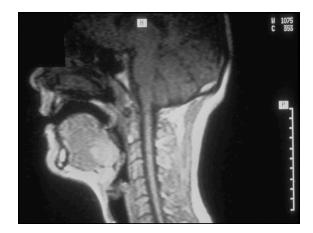

"...and on the box sat a fat and red-faced boy, in the state of somnolency." C. Dickens

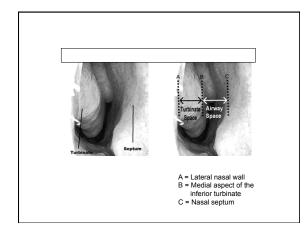
OSA Predisposing Factors


- Age (40 60 years)
- Male Gender (8 : 1 male : female)
- Hypothyroidism
- Medications, Alcohol
- · Obesity
- Anatomic Abnormalities



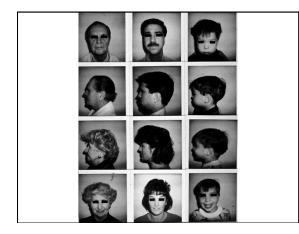






Contributors to an Abnormal Upper Airway

- Excess, erythematous pharyngeal tissue
- Enlarged, erythematous uvula
- Macroglossia
- Congested nasal passages
- Low-lying soft palate
- High arched hard palate


Craniofacial Dysmorphism and OSA

 Infants with apneas had family members with OSA, and small upper airways were a common familial feature

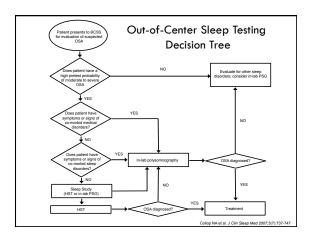
 Relatives of OSA patients reported more OSA symptoms and sleep-related breathing disorders, plus more evidence of craniofacial dysmorphism, compared to controls

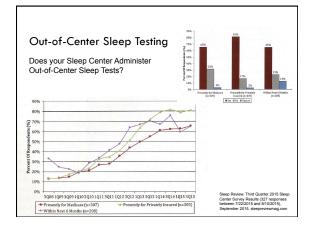
Guilleminault, et al., 1986. Mathur and Douglas, 1995; Guilleminault, 1995

Craniofacial Dysmorphism Due to Non-Genetic Factors

- Early problems with nasal breathing such as nasal allergies have a negative impact on upper airway development.
- The increase in nasal resistance can halt growth of the maxillo-mandibular skeleton, and induced changes in the naso-maxillary, mandible, and pharyngeal airway space.
- Development of mouth breathing in association with an increase in nasal resistance, leads to mouth opening and mouth breathing during the day and night.
- This obligate mouth breathing and alteration in craniofacial growth are associated with OSA.

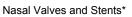
Harvold, E, Tomer, B, Vargervik, K, Chierici, G Primate Experiments on oral respiration. Am J Orthod 1981:79(4)359-372

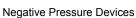



- A tendency to have a retruded mandible (p=0.05)
- A greater inclination of the mandibular and occlusal planes (p<0.01)
- A tendency to have greater inclination of the upper incisors (p=0.08) $\,$

Juliano ML. Mouth breathing children have cephalometric patterns similar to those of adult patients with obstructive sleep apnea syndrome. Arq Neuropsiquiatr. 2009;67(3B):860-6.

- Sleep evaluation in newly discovered OSA in patients <u>during</u> hospitalization
- Sleep evaluation in newly discovered OSA in patients <u>after</u> hospitalization
- Mainagement of a Sile inspatteretaillating SA and atterness that is a first of the side o
- What about the future?

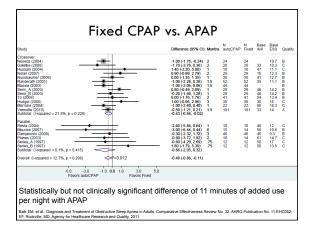

- Sleep evaluation in newly discovered OSA in patients <u>during</u> hospitalization
- Sleep evaluation in newly discovered OSA in patients <u>after</u> hospitalization
- Management of OSA in patients during and after hospitalization
- WW/whatlaoe:/OBe futpagement options for patients prior to and following discharge from the hospital?


Treatment for Snoring* and OSA

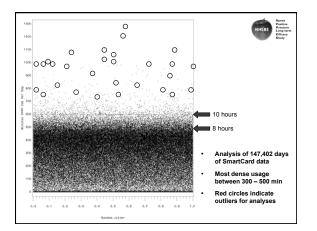
PAP

Surgery*

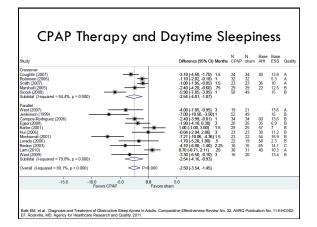
Oral Appliances*

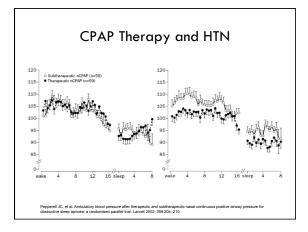

Weight Loss*

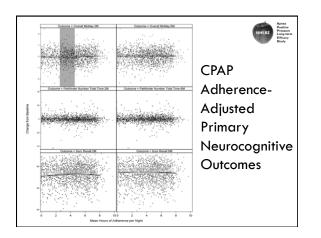
Behavior Modification*

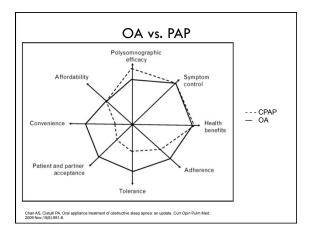

Medications

Devices

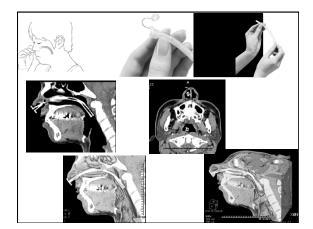

- **CPAP** (continuous positive airway pressure): delivers single, fixed pressure
- BPAP (bilevel positive airway pressure): delivers inspiratory and expiratory pressures with or without backup rate
- APAP (auto-titrating positive airway pressure): delivers pressure based on flow signal at almost a breath-to-breath basis
- ASV (adaptive pressure support servoventilation): delivers a small but varying amount of ventilatory support

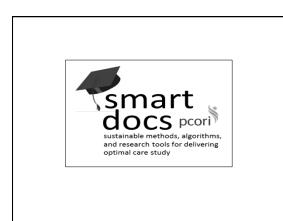


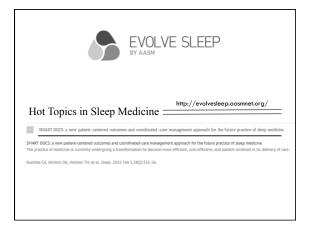




				CF in OSA Patients				
Author (Year)	Study Type	n	OSA Severity	Conclusions				
Barbé (2001)	RCT	29/25	severe	no difference in Active vs. Sham CPAP groups for 8 A/P, L/M, and E/F tests				
Bédard (1991)	сс	20/10	mod- severe	decrease* in 7/9 A/P and 2/4 E/F tests; decrease* in 5/6 L/M tests (only severe cases)				
Cheshire (1992)	CS	29	mod- severe	correlation* between AHI and 1/2 EF tests and IQ decrease; no correlation in 3 A/P or 1 L/M tests				
Findley (1986)	CS	26	severe	decrease* in 4/8 A/P, L/M, and E/F tests for hypoxemic vs. non-hypoxemic OSA subjects				
Greenberg (1987)	сс	14/14	severe	decrease* in 7/14 A/P and E/F tests vs. controls				
Ingram (1994)	сс	16/43	mild- severe	no difference in OSA vs. controls subjects ≥ 54 yrs for 1 A/P test				
Kim (1997)	СН	199/642	mild- severe	negative association* between log AHI and psychomotor efficiency in 8 A/P, L/M, or E/F tests				
Naëgelé (1995)	сс	17/17	severe	decrease* in 1/4 A/P tests, 8/10 L/M tests, and 3/9 E/F tests vs. controls				
Presty (1991)	CS	119	mild- severe	decrease* in A/P and L/M tests for those OSA patients with severe hypoxia				
Redline (1997)	сс	32/20	mild-mod	decrease* in 1/4 A/P tests and 1/5 E/F tests; no difference in 3 L/M tests vs. controls				
Telakivi (1993)	CS	31	mild- severe	no correlation between hypoxia or sleepiness and 7 A/P, L/M, and E/F tests				
Verstraeten (1996)	сс	26/22	mild- severe	no differences in OSAS vs. insomnia subjects for 6 A/P, L/M, or E/F tests				



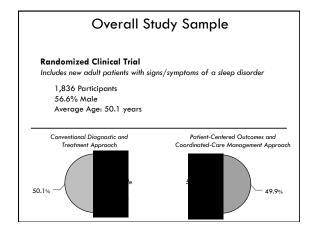

			(DA vs.	PAP		
Parallel/Firs	t Arm Cro	ossover S	tudie	s			
Study or subgroup	Oral appliance N	Mean(SD)	CPAP N	Mean(SD)	Nean Difference IV,Random,95% CI	Weight	Nean Difference IV, Random, 95% Cl
Fleethan 1998	50	27.2 (26)	51	9.2 (14)		■ 17.0 %	18.00 [9.83, 26.17]
Hoekema 2006	47	7.8 (14.4)	47	2.4 (4.2)		30.8 %	5.40 [1.11, 9.69]
Lam 2007	34	10.6 (6.41)	34	2.8 (9.91)		32.2 %	7.80 [3.83, 11.77]
Randerath 2002	12	13 (12.1)	8	3.8 (2.8)		20.0 %	9.20 [2.08, 16.32]
Total (95% CI) Heterogeneity: Tau ^a = ; Test for overall effect: 2	143 10.84: Chi ^p = 7.2 = 4.14 (P = 0.0)	18, df = 3 (P = 0 00034)	140 .06); P =5;	-20	-10 0 10	100.0 %	9.08 4.78, 13.38
Crossover St	udies			Appliance better	CPAP b	itter	
Study or subgroup	0A N	(9	4P 1	AHI/hr GD	AHI/hr IV,Fixed,95% CI	Weight	AHI/hr IV,Fixed,95% CI
Barnes 2004		80	80	9.2 (1.205)	-	45.0 %	9.20 [6.83, 11.57]
Engleman 2002		48	48	7 (2.06)		15.5 %	7.00 [2.96, 11.04]
Ferguson 1996		19	19	14 (4.54)		3.2 %	14.00 [5.10, 22.90]
Ferguson 1997		20	20	10 (3.72)		4.7 %	10.00 [2.71, 17.29]
01son 2002		24	24	5.1 (2.11)		14.8%	5.10 [0.96, 9.24]
Randerath 2002		20	20	10.6 (3.9)		4.3 %	10.60 [2.96, 18.24]
Tan 2002		21	21	4.9 (2.25)		12.5 %	4.90 [0.41, 9.39]
Total (95% CI)	42, df = 6 0P = 0 = 9.83 0P < 0.00	.28); P =19% (001) cable			•	100.0 %	7.97 (6.38, 9.56)

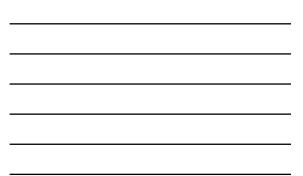


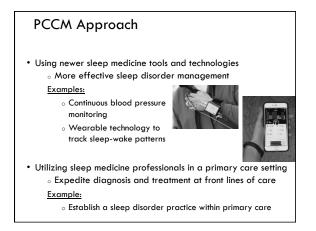
- Sleep evaluation in newly discovered OSA in patients <u>during</u> hospitalization
- Sleep evaluation in newly discovered OSA in patients <u>after</u> hospitalization
- Management of OSA in patients during and after hospitalization
- What about the future?

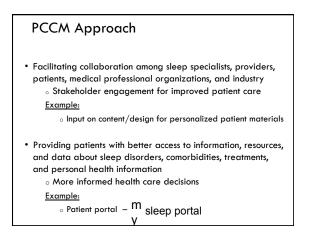
Healthcare Transformation

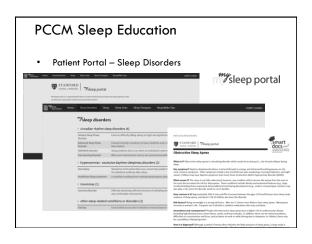
- The practice of medicine is transforming to become more:
 - $_{\circ}$ Efficient
 - 。 Adaptable
 - $_{\circ}$ Cost-Effective
 - Multidisciplinary
 - Patient-Centered

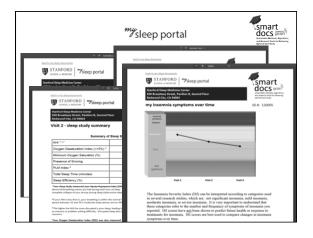



SMART DOCS Goals


To introduce a new Patient-Centered Outcomes and Coordinated-Care Management (PCCM) approach for the future practice of sleep medicine

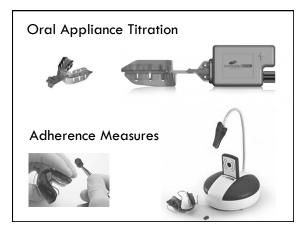

 To compare the PCCM approach to conventional (CONV) sleep medicine practice in a clinical trial evaluating:


- Patient ratings of health care performance
- Disease-specific outcomes
- Global health measures
- $_{\circ}$ Health care utilization



Obstructive Sleep Apnea

includes branching logic and clinician report


٠

- We use mainly out-of-center sleep testing (OCST) devices with ambulatory blood pressure monitoring for those who have borderline or definitive hypertension
- For those with high predictive probability for diabetes, measure glucose, insulin, and lipid levels
- Genetic markers (e.g., ApoE4) will be tested
- Adherence measures are uploaded to the web portal

Obstructive Sleep Apnea

- Patients prescribed oral appliances have their probability of success and their target protrusive position assessed by the MATRx device
- There are integrated adherence monitoring devices in the OAs
- OA efficacy is evaluated with the OCST devices or in-lab polysomnograms
- OA efficacy and adherence data are placed on the web
 portal

Tools and Technologies

- Alliance Sleep Questionnaire
- Greater use of OCSTs
- Ambulatory blood pressure assessments (SOMNOtouch)
- Oral appliance titration (MATRx)
- Oral appliance adherence assessment (TheraMon)
- Sleep-wake patterns, fitness, nutrition (Jawbone UP24)
- Cognitive behavioral therapy for insomnia (SleepRate)
- Salivary dim light melatonin onset (DLMO)
- Diabetic risk assessment, inflammatory markers
- Genetic markers

Primary Care

Sleep physician, nurses, and technologists at PCP office to:

- Assist in patient evaluation and referral decisions
- Order and set-up home sleep studies at PCP office
- Promptly attend to management issues, e.g., suboptimal adherence, CBTI instruction

Coordinated Care

- Sleep technologists with Certification in Clinical Sleep HealthTM (CCSH) "work directly with sleep medicine patients, families, and practitioners to coordinate and manage patient care, improve outcomes, educate patients and the community, and advocate for the importance of good sleep."
- Contact patients within one week after sleep studies and after receiving PAP to address any questions or issues.

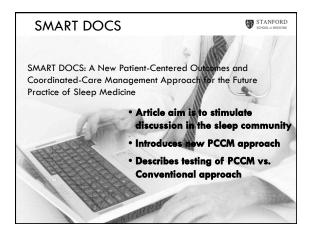
Outcomes

Impact on Improved Health Care Performance

<u>Primary Endpoint</u>: Consumer Assessment of Healthcare Providers and Systems Clinician and Group Survey (CGCAHPS) Global Provider Rating

<u>Secondary Endpoint</u>: Items on "How Well Providers (or Doctors) Communicate with Patients"

<u>Secondary Endpoint</u>: Items on the CGCAHPS Health Information Technology Item Set


Impact on Cost Containment

Secondary Endpoint: Out-of-pocket costs

Outcomes

Impact on Improved Health

Primary Endpoint: SF-36 Vitality Component Score Secondary Endpoint: SF-6D Health Utility index Secondary Endpoint: FOSQ-10 Secondary Endpoint: SF-36 Physical Component Score Secondary Endpoint: Alliance Sleep Questionnaire (ASQ) Disorder Specific Measures Epworth Sleepiness Scale (ESS, normative value 12.0 ± 4.0) Insomnia Severity Index (ISI, normative value 20.0 ± 5.0) International Restless Legs Syndrome Study Group Rating

