New Perspectives in Sedation-Analgesia

Pedro Gambús, M.D.

Consultant, Department of Anaesthesiology Hospital CLINIC de Barcelona, Spain Adjunct Associate Professor Department of Anaesthesia and Perioperative Care University of California, San Francisco

advancing health worldwide

New Perspectives in Sedation-Analgesia

- Current situation
- Sedative Effects
 - Defining optimal sedation
 - Use of EEG derived measurements
 - Predicted Concentrations: TCI systems
- Collateral Effects
 - Respiratory Effects
 - Cognitive Effects: Recovery

Sedation-Analgesia: current situation

Different Departments: different solutions

- Anesthesiologists only
 - Nurses
 - Supervised nurses
- GI endoscopists by themselves

Hospital CLINIC-Barcelona (2014):

- 15% of total anesthetic activity in the OR
- >50% of total anesthetic activity outside the OR (NORA) (~10,000 pat/year)
- Significant part in GI Endoscopy practice (>20 patients/day)
- 25% of all income in Anesthesia Dpt (ASA-USA):
 - Ophtalmologic+Gastroscopy+Colonoscopy

Sedation-Analgesia: current situation

- Increasing social demand
- Required by our colleagues:
 - GI endoscopists,
 - Invasive Radiology,
 - Cardiology Labs
 - Ophtalmology
 - Psychiatry

- The majority are **outpatients**:
 - Coming from home (often with very little information)
 - Rapid discharge
- Some (many) are among our sickest patients
- Relatively slow development of control systems:
 - Infra valued: patient, anesthesiologists, colleagues
 - "Low intensity Anesthesia"
 - Less dosing \rightarrow less problems

Sedation-Analgesia: control

• Therapeutic effect: sedation and/or analgesia

- Poorly controlled:
 - Observing the patient (no objective measure)
 - Endoscopist comments ("he's moving", "eyes open", ...)

• Side effects:

- Potentially serious
- Hemodynamics
- Respiratory: must keep spontaneous respiration
- Ambulatory context:
 - Discharge back to normal life
 - Optimal titration of drugs

Anesthetic vs Sedative Effects: Control Systems

- Well validated in General Anesthesia:
 - Monitoring hypnotic effect
 - Monitoring
 hemodynamics
 - Respiratory monitoring
 - Predicted concentrations
 - TCI systems
 - End tidal concentration of inhalation agents

- Sedation-Analgesia:
 - Lower concentrations
 - Inter-patient variability
 - Spontaneous breathing (respiratory depression)
 - No NMBA
 - Presence of artifacts (muscular)

Modeling the effect of Propofol and Remifentanil for Sedation-Analgesia in Gl endoscopic procedures

advancing health worldwide™

Propofol-Remifentanil Data→ Effect

- Data from 110 patients
- > 10.000 data points
 Colored Cubes
- "Estimates" the surface relationship of prop & remi
- Defines (combined) "target concentrations" for propofol and remifentanil
 - For a given BIS effect
- Prospectively validated

Gambús P; Anesth & Analg, 2011

Ramsay Sedation Scale- 4 [Arousable to tactile stimuli]

	Propofol (µg∙mL⁻¹)	Remifentanil (ng·mL⁻¹)
Target Conc [C _e]	2.7-1.8	0-1.5

	AAI/2	BIS
Range	25-30	71-75

These combinations can be used as safe starting points when using TCI systems to provide **MAC-sedation** for GI endoscopy (ultrasonographic endoscopy, ERCP, ...)

Gambús P; Anesth & Analg, 2011

Can we use TCI as a measure of Sedation?

Can we use predicted effect-site concentrations to better adjust sedation?

advancing health worldwide ^m

Optimal Dosing to Avoid a Gag Response

- How many patients gag with placement of endoscope?
 - No problems in 20% pts
 - "Stress Response:" BP, HR, moving
 - Risk of esophageal tear,...
- Best approach:
 - Use Propofol and Remi TCIs
 - TCI Remi and Propofol Bolus
 - Non-TCI Remi infusion plus
 Propofol bolus

- Patients randomized to 4 groups, all with TCI pumps
 - REMI 1 // REMI 2
 - PROP 2 // PROP 3
- Second drug adjusted per Dixon Up/Down Method
 - Gag (+): increase in next patient
 - Gag (-): decrease in next patient
- Gag evaluated by the same endoscopist
- Endoscopy continued
 - Patients stayed in their assigned TCI group

advancing health worldwide

University of California San Francisco

advancing health worldwide ^m

Optimal Dosing to Avoid Gag Remi 1 ng/mL Group

advancing health worldwide¹

Optimal Dosing to Avoid Gag Remi 2 ng/mL Group

advancing health worldwide¹

Optimal TCI targets to avoid Gag

	Ce50	Ce90
Remifentanil 1 ng/mL	2.4 mcg/mL	4.2 mcg/mL
Remifentanil 2 ng/mL	2.1 mcg/mL	2.9 mcg/mL
Propofol 2 mcg/mL	1 ng/mL	4.8 ng/mL
Propofol 3 mcg/mL	0.7 ng/mL	3.1 ng/mL

RSS: 4	Propofol (µg∙mL ⁻¹)	Remifentanil (ng∙mL ⁻¹)
Target Conc [C _e]	2.7-1.8	0-1.5

- Agreement with volunteer studies
- Higher than targets for RSS 4
- Bolus and continuous infusion can be estimated

advancing health worldwide

Sedation-Analgesia Side Effects

Respiration

advancing health worldwide n

MAC related injury: Closed claim analysis

- 1952 claims in total; 6% were related to MAC
- Respiratory depression, after absolute or relative overdose of sedative or opioid drugs, was the most common (21%, n=25) specific damaging mechanism in MAC claims
- Nearly half of these claims were judged as preventable by better monitoring, including capnography, improved vigilance, or audible alarms.

Monitoring: Respiratory Function

- Oxygen delivery
 - SpO₂
 - $O_2 Supply$
- Ventilation
 - Respiratory Rate: ETCO₂, Impedance, Acoustic,
 Plethysmogram, exhaled Water Vapor...
 - Spirometry: TV, minVol
- CO₂ elimination
 - ETCO₂
 - PTCO₂ (transcutaneous sensor)
 - (Art. Blood gases)

Propofol Remifentanil: Synergy for Respiratory Depression

advancing health worldwide

TCI Propofol-Remifentanil: Recovery of CO2 to normal

University of California San Francisco

Sedation Analgesia and Respiratory Function Summary

- Sedation-Analgesia is not General Anesthesia
 - Optimal sedation measures
- Synergistic Respiratory Depression:
 - Measure and Predict
 - Keep control and anticipate
- Integrate influence of noxious stimuli (variability)
 - Noxious stimulus increases 20% for sedation
 - Noxious stimulus has no effect respiratory depression
 - GAG increases 70% requirements pro-remi
- Always consider the "whole picture"

Should we measure recovery of cognitive function after Sedation-Analgesia?

advancing health worldwide "

- Outpatients
- Resume normal life
- Conservative approach
 - Discharge criteria from ambulatory surgery
 - Based mostly hemodynamics, side effects
 - Recommend patients taking no responsibility
- Technologic development allows bedside measurement of cognitive function

- 30 patients
- Colonoscopy
- TCI Sedation-Analgesia
 - Propofol
 - Remifentanil
- Cogstate[®]
 - Pre
 - Basal
 - 10, 40, 120 min after end of colonoscopy

- Cogstate[®]
 - Attention
 - Detection task
 - Identification task
 - Memory
 - Visual Memory
 - Working Memory
- Presented to the patient with a laptop computer
- Prevent learning effect
 - Prebasal
 - Basal

- Median age: 59 years
- ASA 1-2
- Median duration of colonoscopy: 23 min
- Significant changes from baseline, only attention tasks
 - Identification
- Memory (visual or working) not affected

- Further studies required
 - Cognition
 - Ambulatory surgery
- Redefine discharge criteria
- Individualized discharge based on
 - Recovery (side effects, ...)
 - Cognition

Conclusions

- Expansion of Sedation-Analgesia
- Avoid serious complications: improve control
- Improve control by
 - Keep in mind: Sedation is not general anesthesia
 - Optimal objective monitoring of sedation
 - Optimal monitoring **respiratory function**
 - Incorporate factors to decrease variability in effects
- Significant role for TCI systems
- Optimize discharge
 - Evaluate Cognitive Recovery
- "Personalized Sedation-Analgesia"