

#### The Changing Landscape of Noninvasive Ventilation: Introducing Helmet Ventilation

Bhakti K. Patel, MD University of Chicago

# **Conflicts of Interest**

- No relevant conflicts of interest
- Funding:
  - T32 NIH/NHLBI
  - Unrestricted internal grant from the Daniel Edelman family
- Sponsor had no role in the design and conduct of the study, collection, management, analysis, and interpretation of the data or preparation, review, or approval of the manuscript



#### Case

38 yo woman with hx of kidney transplant for FSGS presenting with progressive shortness of breath and productive cough x 1 week.

Despite broad spectrum abx, she developed worsening tachypnea and hypoxia and was transferred to the ICU. On admission she was afebrile, tachypneic (RR 38-42 breaths/min), and was saturating 89% on 100%NRB.

What are her treatment options?

- Immediate intubation
- High flow nasal cannula
- Noninvasive ventilation

THE UNIVERSITY OF Chicago medicine



# Noninvasive Ventilation (NIV)

 Obviates the need for endotracheal intubation

• Avoids the complications of invasive mechanical ventilation

- Benefits are compelling
  - COPD exacerbations
  - Cardiogenic pulmonary edema





# Acute Hypoxemic Respiratory Failure (AHRF)

• NIV improves outcomes in immunocompromised patients

Noninvasive Ventilation for Treatment of Acute Respiratory Failure in Patients Undergoing Solid Organ Transplantation A Randomized Trial

Antonelli et al. JAMA 2000;283:235-241

Recent data have shown

No benefit with
face mask NIV

Increased mortality

NONINVASIVE VENTILATION IN IMMUNOSUPPRESSED PATIENTS

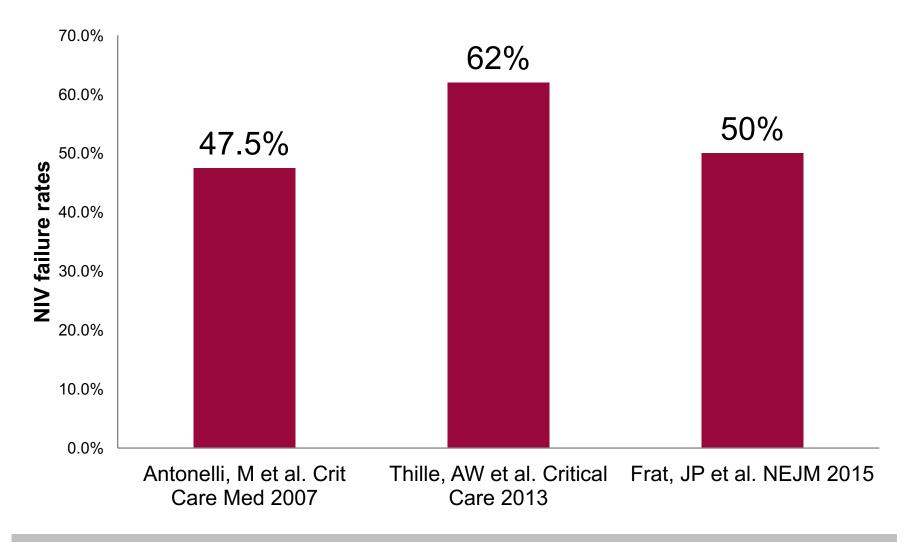
NONINVASIVE VENTILATION IN IMMUNOSUPPRESSED PATIENTS WITH PULMONARY INFILTRATES, FEVER, AND ACUTE RESPIRATORY FAILURE

Gilbert et al. NEJM 2001; 344(7):481-7

Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT Effect of Noninvasive Ventilation vs Oxygen Therapy on Mortality Among Immunocompromised Patients With Acute Respiratory Failure A Randomized Clinical Trial Lemiale et al. JAMA 2015; 314(16):1711-19.

#### The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812 JUNE 4, 2015


v

VOL. 372 NO. 23

High-Flow Oxygen through Nasal Cannula in Acute Hypoxemic Respiratory Failure Frat et al. NEJM 2015;372:2185-2196



# NIV failure rates are high in patients with AHRF



THE UNIVERSITY OF CHICAGO MEDICINE

### Why are NIV failure rates so high?

- High levels of PEEP are needed
- Excessive air leak
- Patient intolerance



A possible solution...

Continuous Positive Airway Pressure for Treatment of Postoperative Hypoxemia A Randomized Controlled Trial

- Enrolled patients with PaO2/FiO2 <300</li>
- Reduced reintubation rates from 10% to 1%
- Patient intolerance was low

Squadrone et al. JAMA. 2005;293:589-595

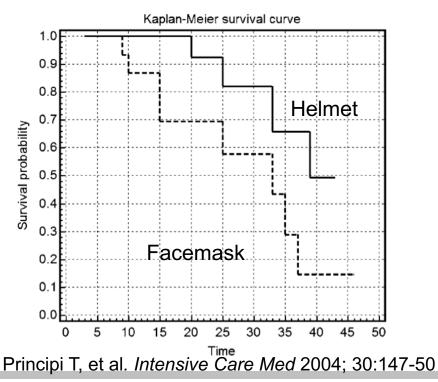


#### Alternative interface for NIV





#### Precedents...


- Improved tolerability
- Improved gas exchange

#### Noninvasive Ventilation by Helmet or Face Mask in Immunocompromised Patients\*

#### A Case-Control Study

Rocco M, et al. *CHEST* 2004; 126:1508-1515

• ? Lower hospital mortality



THE UNIVERSITY OF CHICAGO MEDICINE

# Study Design

- Single-center randomized clinical trial
  - Patients with ARDS requiring face mask NIV for ≥8 hours
  - ARDS defined by Berlin Criteria
- Exclusion Criteria:
  - Cardiopulmonary arrest
  - Glasgow Coma Scale <8</li>
  - Absence of airway protective reflex
  - Elevated intracranial pressure
  - Tracheostomy
  - Upper airway obstruction
  - Pregnancy
  - Refused endotracheal intubation Patel BK, et al. JAMA. 2016;315(22):2435-2441.

# Study Groups

- Intervention: Helmet NIV
  - Switch Face Mask to Helmet



- Control: Face mask NIV
  - Philips Respironics





# Standard NIV titration for both groups

- PEEP titration
  - Goal: SpO<sub>2</sub>  $\ge$  90%, FiO<sub>2</sub> of  $\le$  60%
- Inspiratory pressure titration
  - Goal: RR < 25 breaths/min; no accessory muscle use
- NIV weaning:

THE UNIVERSITY OF Chicago medicine

- Reduce support progressively
- Discontinuation criteria:
  - RR< 30 breaths/min
  - $PaO_2 > 75mm Hg$  with  $FiO_2 \le 50\%$  and  $PEEP \le 5 cmH_2O$

### **Pre-specified Intubation Criteria**

- Neurologic deterioration
- Oxygen saturation < 88%
- Respiratory rate > 36 breaths per minute
- Intolerance of face mask or helmet
- Airway bleeding or copious respiratory secretions



## Ventilator management of intubated patients

- Low tidal volume strategy
- Daily interruption of sedation
- Awakening and breathing trials
- Early mobilization

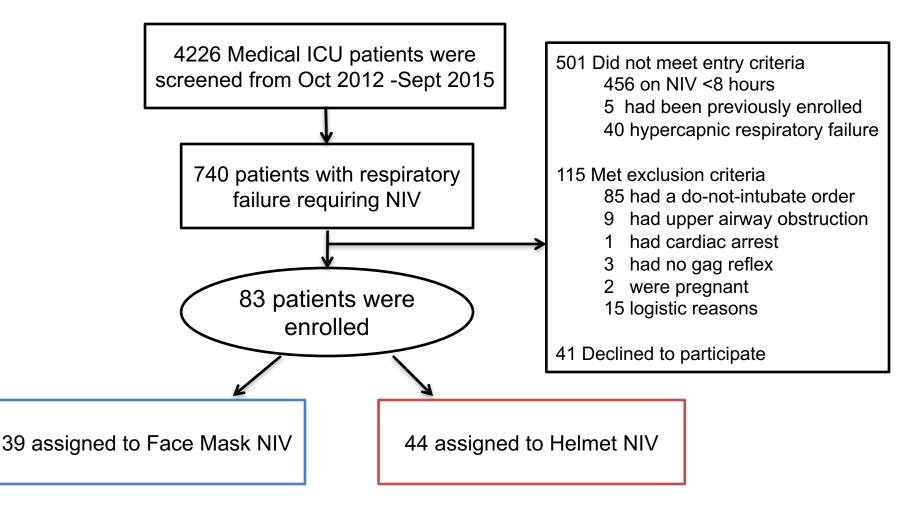


# **Study Outcomes**

- **Primary outcome**: Endotracheal intubation rate
- Secondary outcomes:
  - 28-day invasive ventilator free days
  - Duration of ICU stay
  - Hospital length of stay
  - Hospital mortality
  - 90-day mortality
  - Adverse events

#### **Power Calculation**

- NIV failure rate of 50% for patients with AHRF
- <u>Target:</u> 20% absolute reduction of the primary outcome
- Enrollment of a total of 206 patients
  - 80% power
  - Two-sided alpha level of 0.05.




## Data & Safety Monitoring Board

• The DSMB recommended early stoppage for efficacy and safety



#### **Consort Diagram**





#### **Baseline Characteristics**

| Characteristic              | Face Mask NIV<br>(N=39)                      |             | Helmet NIV<br>(N=44) |             |  |
|-----------------------------|----------------------------------------------|-------------|----------------------|-------------|--|
| Age year                    | 60.9                                         | [56.4-71.1] | 58                   | [49.8-67.8] |  |
| Female no. (%)              | 18                                           | 46%         | 20                   | 45%         |  |
| African American no. (%)    | 22                                           | 56%         | 28                   | 64%         |  |
| White, Nonhispanic – no (%) | 13                                           | 33%         | 11                   | 25%         |  |
| White, Hispanicno (%)       | 3                                            | 8%          | 3                    | 7%          |  |
| Asianno (%)                 | 1                                            | 3%          | 2                    | 5%          |  |
| Body Mass Index             | 28                                           | [23-35]     | 27                   | [24-36]     |  |
| APACHE II                   | 26                                           | [23-30]     | 25                   | [20-28]     |  |
|                             |                                              |             |                      |             |  |
| Past Medical History        |                                              |             |                      |             |  |
| Solid Cancer                | 10                                           | 26%         | 5                    | 11%         |  |
| Hematologic Cancer          | 6                                            | 15%         | 7                    | 16%         |  |
| Solid Organ Transplant      | 3                                            | 8%          | 5                    | 11%         |  |
| Stem Cell Transplant        | 1                                            | 3%          | 5                    | 11%         |  |
|                             | Patel BK, et al. JAMA. 2016;315(22):2435-244 |             |                      |             |  |

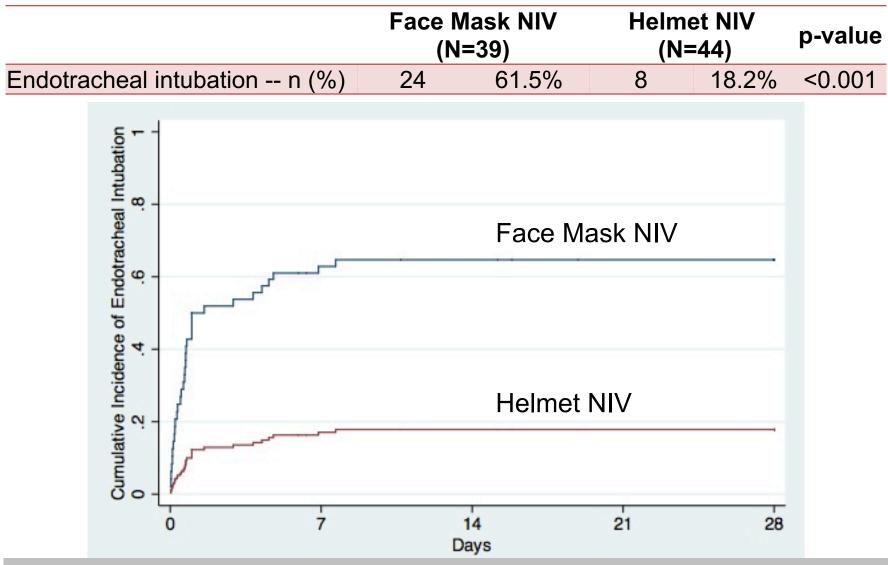
#### **Baseline Characteristics (cont'd)**

|                                                |     | Mask NIV<br>I=39) | _    | met NIV<br>N=44) |
|------------------------------------------------|-----|-------------------|------|------------------|
| Reason for acute respiratory failure           |     |                   |      |                  |
| Pneumonia                                      | 14  | 36%               | 23   | 52%              |
| Aspiration                                     | 5   | 13%               | 3    | 7%               |
| Extrapulmonary ARDS                            | 6   | 15%               | 3    | 7%               |
| Pneumonia due to immunosuppression             | 14  | 36%               | 15   | 34%              |
|                                                |     |                   |      |                  |
| Respiratory/hemodynamic parameters             |     |                   |      |                  |
| Duration of NIV prior to randomization (hours) | 13  | [8-19.7]          | 10.3 | [8.3-13.4]       |
| Inspiratory Positive Airway Pressure           | 10  | [10-15]           | 12   | [10-14.5]        |
| Expiratory Positive Airway Pressure            | 5   | [5-8]             | 5    | [5-8]            |
| SpO2(%)                                        | 95  | [91-99]           | 97   | [95-99]          |
| FiO2(%)                                        | 60  | [50-80]           | 60   | [40-90]          |
| PaO2: FiO2                                     | 144 | [90-223]          | 118  | [93-170]         |
| Shock                                          | 12  | 31%               | 9    | 20%              |

Patel BK, et al. JAMA. 2016;315(22):2435-2441.



# Respiratory support after Randomization


|                                                     | Face Mask NIV<br>(N=39) |             |         | Helmet NIV<br>(N=44) |        |
|-----------------------------------------------------|-------------------------|-------------|---------|----------------------|--------|
| Duration of NIV (hours)                             | 26.4                    | [7.0-60.0]  | 19.8    | [8.4-45.6]           | 0.68   |
| PEEP (cm H <sub>2</sub> O) <sup>a</sup>             | 5.1                     | [5.0-8.0]   | 8       | [5.0-10.0]           | 0.006  |
| Pressure Support (cm H <sub>2</sub> O) <sup>a</sup> | 11.2                    | [10.0-14.5] | 8       | [5.6-10.0]           | <0.001 |
| FiO2 (%) <sup>a</sup>                               | 60                      | [50.0-68.6] | 50      | [40.0-60.0]          | 0.02   |
| SpO2 (%) <sup>a</sup>                               | 95.3                    | [92.3-96.7] | 96.2    | [94.8-98.4]          | 0.13   |
|                                                     |                         |             |         |                      |        |
| Change in Respiratory Rate                          |                         |             |         |                      |        |
| Baseline Breaths/min <sup>a</sup>                   | 28.3                    | [22.1-34.4] | 27.7    | [21.5-34.6]          |        |
| After Randomization Breaths/min <sup>a</sup>        | 29.1                    | [22.1-37.6] | 24.5    | [20.4-30.5]          |        |
|                                                     | p=0.21                  |             | p<0.001 |                      |        |

<sup>a</sup>Area under the curve analysis of all vital signs and Respiratory Support

Patel BK, et al. JAMA. 2016;315(22):2435-2441.



# **Primary Outcome**



Patel BK, et al. JAMA. 2016;315(22):2435-2441.

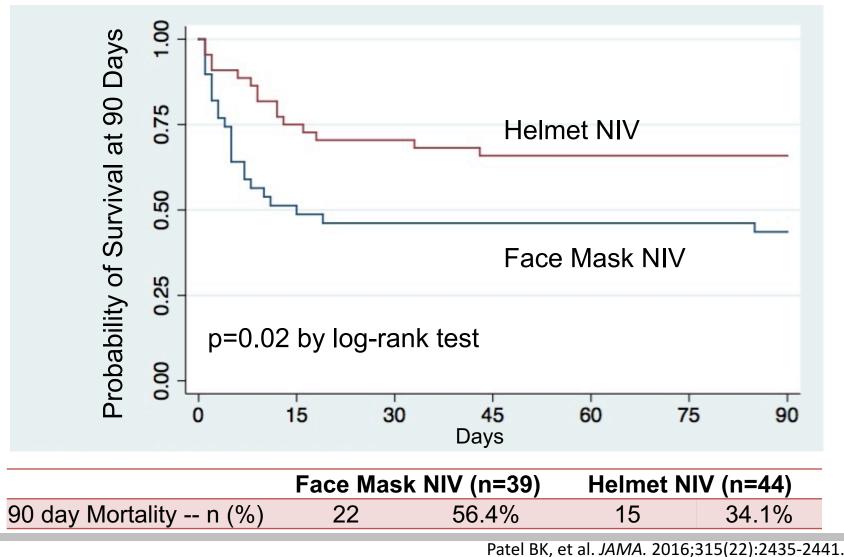
THE UNIVERSITY OF Chicago Medicine

#### **Reason for Endotracheal Intubation**

| Reason for intubation n (%) | Face Mask NIV<br>(N=39) |       | Helmet NIV<br>(N=44) |       | p-value |
|-----------------------------|-------------------------|-------|----------------------|-------|---------|
| Respiratory Failure         | 20                      | 83.3% | 3                    | 37.5% | 0.01    |
| Circulatory Failure         | 3                       | 12.5% | 0                    | 0%    | 0.55    |
| Neurologic Failure          | 1                       | 4.2%  | 5                    | 62.5% | 0.001   |

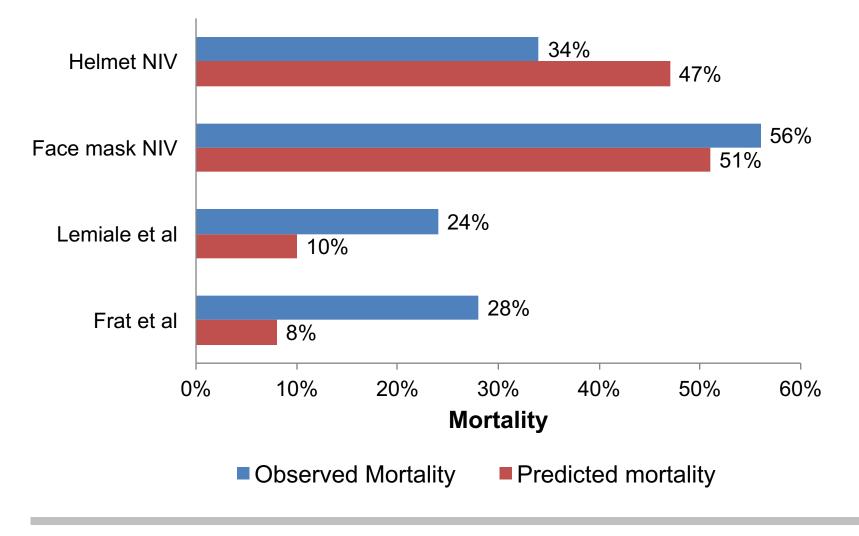
Patel BK, et al. JAMA. 2016;315(22):2435-2441.




#### **Secondary Outcomes**

|                                | Face Mask NIV<br>(N=39) |            | Helmet NIV<br>(N=44) |            | p-value |
|--------------------------------|-------------------------|------------|----------------------|------------|---------|
| 28 day Ventilator Free Days    | 12.5                    | [0.5-28]   | 28                   | [13.7-28]  | < 0.001 |
| ICU length of stay (days)      | 7.8                     | [3.9-13.8] | 4.7                  | [2.5-8.7]  | 0.04    |
| Hospital length of stay (days) | 15.2                    | [7.8-19.7] | 10.1                 | [6.5-15.9] | 0.16    |
| Hospital Mortality n (%)       | 19                      | 48.7%      | 12                   | 27.3%      | 0.04    |
|                                |                         |            |                      |            |         |
| Adverse Events                 |                         |            |                      |            |         |
| Mask Deflation                 | 0                       | 0%         | 2                    | 4.5%       |         |
| Skin Ulceration                | 3                       | 7.6%       | 3                    | 6.8%       |         |

Patel BK, et al. JAMA. 2016;315(22):2435-2441.




#### **Survival Analysis**





# **Comparison to Published Data**





# **Cautions and Limitations**

- 1. CO<sub>2</sub> rebreathing and dyssynchrony
- 2. Clinician learning curve
- 3. Unblinded
- 4. Single center trial
- 5. Early stoppage may magnify effect size of the primary outcome





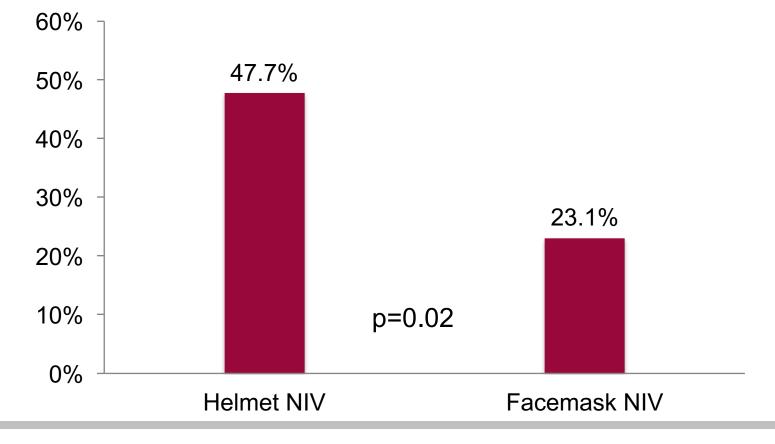


#### Back to the case

- Randomized to Helmet NIV  $\rightarrow$  PaO<sub>2</sub>/FiO<sub>2</sub> 108
- Titrated NIV to PEEP of 17 and weaned to fiO2 of 60%
- Tachypnea improved to the mid 20s
- Tolerated helmet NIV for 43 hours and weaned to nasal cannula
- Transferred to the floor after 4 days in the ICU and later discharged home



### Conclusions


- Helmet NIV in comparison to Face Mask NIV in patients with ARDS
  - Reduced intubation rate
  - Improved ventilator free days
  - Reduced ICU length of stay
  - Improved mortality
- Biological Basis
  - High fresh gas flow
  - PEEP effect
  - ?High tidal volumes

Patel BK, et al. JAMA. 2016;315(22):2435-2441.



Helmet group achieved higher PEEP

#### Proportion of patients on PEEP $\geq$ 10





#### **Observed Tidal Volumes**

- Expired tidal volume was significantly higher in patients who failed noninvasive ventilation as compared with those who succeeded
  - 10.6 mL/kg [9.6–12.0] vs 8.5mL/kg [7.6–10.2]; *p* = 0.001

|                    | Face Mask NIV<br>(n=39) |           | Helmet NIV*<br>(n=44) |             |  |
|--------------------|-------------------------|-----------|-----------------------|-------------|--|
| Tidal Volumes (mL) | 398                     | [321-523] | 1405                  | [1135-1811] |  |
| Tidal Volume ml/kg | 6.5                     | [5.6-8.3] |                       |             |  |

\*The helmet NIV tidal volumes are unknowable as a proportion of tidal volume distends the helmet and the rest in inspired tidal volume

Carteaux G, et al. Crit Care Med 2016; 44: 282-290

# **Next Steps**

- Long term outcomes
  - Functional independence at 1 year
  - Hospitalizations after ICU discharge
- Comparison of Helmet vs High Flow Nasal Cannula
  - Predictors of failure
  - Protocol of advanced NIV support
- Translational studies
  - Animal models to understand biologic plausibility
  - Biologic samples from enrolled patients
- Physiologic studies
  - Synchrony/ CO<sub>2</sub> rebreathing
  - Tidal volume

#### Acknowledgements

- Critical Care Research Group
  - John P. Kress, MD
  - Jesse B. Hall, MD
  - Anne Pohlman, MSN
  - Krysta Wolfe, MD
- Respiratory therapy

THE UNIVERSITY OF Chicago medicine

- Rebecca Rose
- Scott Melinauskas
- Steve Mosakowski

- Physical/Occupational Therapy
  - Cheryl Esbrook, OT
  - Amy Pawlik, PT
  - Megan McDonald, PT
  - Erin Zeleny, OT
  - Crystal Corte, OT
  - Megan Teele, PT
- MICU Nursing Staff
- ICU Attendings/Fellows
- Medicine Housestaff