

Disclosures

• I have no disclosures

Outline

- Why consider sleep testing among inpatients?
- Inpatient populations at high risk for OSA
- Benefits of PAP initiation in inpatients
- Testing options for OSA in inpatients

Why consider sleep testing for inpatients? OSA is underdiagnosed overall and probably especially prevalent in the multi-morbid inpatient population OSA in hospitalized patients has been associated with adverse outcomes OSA patients use more physician services and are admitted to hospitals at higher rates compared with individuals without OSA

To (inpatient) test or not to test?

Pros

- Early recognition, expedited Tx
- Convenience a captive audience
- Access to hospital resources for complex patients (eg. Hoyer lifts, nursing)
- Opportunity for inpatient education
- Reduce loss to follow-up

<u>Cons</u>

- "Another test, doc?!?"
- Disturbed sleep is common (potential for inconclusive results)
- Many pts to require repeat testing after clinical condition stabilizes
- Not reimbursable (but potential for capturing future outpt charges)

Whom should we test?

Screening for OSA

- Standard screening questionnaires (eg. Berlin, STOP-Bang) have not been validated in inpatients
- Consider screening populations with high OSA prevalence:
 - Post-stroke
 - Cardiac patients (heart failure, afib)
 - Perioperative

Post-Stroke Patients OSA an independent risk factor for ischemic and hemorrhagic stroke High prevalence of OSA after CVA/TIA AHI > 5 in 72%; AHI > 20 in 38% Obstructive > central sleep apnea Presence of OSA predicts poor functional outcome, longer hospitalization/rehab stay, higher mortality and increases risk for recurrent stroke

OSA & Surgery

- OSA pts are often undiagnosed at time of surgery
- Many studies show worse perioperative outcomes in pts with OSA
 - pulmonary complications, oxygen desaturation events, difficult intubation, cardiac complications, ICU transfer
- Professional society guidelines recommend incorporating an OSA screening tool in the preoperative assessment of patients preparing for any surgery

Chung F et al. <u>Anesth Analg.</u> 2016 Aug;123(2):452-73.

	TABLE 1] Effect of CPAP on Postoperative Outcomes in Surgical Patients With OSA			
	Author	Study Type	No.	Result
	Rennotte et al, 1995**	Case series report	16	No-CPAP vs CPAP: 2 vs 14 First patient died; second patient: serious postop Cx 14 patients nasal CPAP Rx, no Cx
Some studies show CPAP use for OSA pts is associated with ♥ post-op pulmonary complications +/- LOS	Gupta et al, 2001 ⁴³	Retrospective case-control study	101	No-CPAP vs CPAP group: 68 vs 33 Any Cc: 44% vs 27% ($P =1$) Serious Cc: 33% vs 9% ($P = .02$) Total ICU stay: 22.3% vs 3% ($P = .001$) Unplanned ICU stay: 27.9% vs 3% ($P = .003$) Hospital stay: 7 ± 3 vs 6 ± 2 days ($P = .03$)
	Jensen et al, 2008 ⁴³	Prospective cohort study	284	No-CPAP/BIPAP vs CPAP/BIPAP: 140 vs 144 Pneumonia: 2.1% vs 0.7% (NS) Hospital stay: 2.2 vs 2.7 days (P = .244)
	Liao et al, 2009 ⁴²	Retrospective matched-cohort study	480	OSA vs non-OSA: 240 vs 240 Postop Cx: 44% vs 28% (P < .05) SvD ₂ < 90%: 17% vs 8% No-CPAP vs CPAP: 90 vs 150 Postop Cx: 46.6% vs 40.6% (P = .36)
	Liao et al, 2013 ⁶⁴	RCT	177	$\begin{array}{l} \text{No-APAP vs APAP: 50 vs 87} \\ \text{Postoperative Cx: 48.3% vs 48.3% ($P=.939$)} \\ \text{Preoperative AHI vs postoperative AHI (NS)} \\ \text{APAP: 30.1 to 3.0 ($P<.001$)} \\ \text{No-APAP: 30.4 to 31.9 ($P=.302$)} \\ \text{Hospital stay: 4.3 \pm 5.5 vs 3.5 \pm 6.2 days ($P=.36$)} \end{array}$
	O'Gorman et al, 2013 ⁴³	RCT	138	No-APAP vs APAP Any Cx: 20.9% vs 23.3% (P = 1.0) No significant difference between LOS (P = .65)
Recent meta-analysis failed to show a difference in post-op adverse events, but possibly	Mutter et al, 2014 ³⁰	Matched-cohort study	20,488	Respiratory Cx Overall: 2.08, 95% CI, 1.35-2.19, $P = .0008$ Diagnosed OSA vs undiagnosed OSA OR, 0.68; 95% CI, 0.27-1.71; $P = .41$ Cardiovascular Cx Undiagnosed OSA vs matched cohort control OR, 2.20; 95% CI, 1.16-4.17; $P = .02$ Diagnosed OSA vs matched cohort control OR, 0.75; 95% CI, 0.43-1.28; $P = .29$ Diagnosed OSA vs undiagnosed OSA OR, 0.34; 95% CI, 0.15-0.77; $P = .009$
	Abdelsattar et al, 2015 ³¹	Prospective cohort study	2646	Untreated OSA vs treated OSA: 1,465 vs 1,181 Cardiopulmonary Cx 6.7% vs 4.0%; aOR, 1.8; P = .001 Unplanned reintubations aOR, 2.5; P = .003 Myocardiai inflarction aOR, 2.6; P = .031
underpowered	Proczko et al, 2014**	Retrospective cohort	693	$ \begin{array}{l} \text{Diagnosed OSA and Rx with CPAP vs STOP-Bang \approx 3 \\ 99 vs 182 \\ \text{Hypertension 11.1% vs 11.5% ($$P$ = .9142$) \\ \text{Death: 0% vs 1% ($$P$ = .5142$) \\ \text{Hospital stay: 3.2 vs 4.1 days ($$P$ < .0001$) \\ \text{Pneumonia: 2% vs 9.3% ($$P$ < .04$) \\ \text{Reintuberion: 0% vs 3.8% ($$P$ = .1442$) } \end{array} $

Options for OSA Testing in Inpatients

Testing for OSA in inpatients

- Portable/"home"/ambulatory sleep apnea testing
- Overnight oximetry
- Full diagnostic polysomnography
- Titration studies not practically feasible

Many inpatients are not traditional candidates for portable monitoring

- Severe cardiorespiratory disease
- Potential respiratory muscle weakness (eg. neuromuscular disease)
- Awake hypoventilation or suspected sleep-related hypoventilation
- Chronic opioid use

High-resolution pulse oximetry as a testing option

- Prospective trial of 125 pts admitted with CHF
- Underwent simultaneous portable monitoring and high-resolution pulse oximetry → good agreement
- HRPO a simple and perhaps costeffective screening tool for OSA

Sharma et al. *J Clin Sleep Med.* 2017; 13(10):1185. Yaddanapudi SS, <u>J Stroke Cerebrovasc Dis.</u> 2018 Nov;27(11):2986-2992.

Practical Considerations for Inpatient Sleep Testing

- Development of institutional protocols & procedures
 - Patient selection
 - Who can order the studies
 - Equipment type
 - Study location
- Training of specialized RTs
- Handling inevitable interruptions

Practical Considerations for Inpatient Sleep Testing, cont.

- Study interpretation / timing
- DME communication
- Transition to outpatient sleep clinic
- Get the word out

Hospitalization: an educational opportunity for CPAP use?

Summary

- OSA is common and likely under-diagnosed among hospitalized patients
- Consider inpatient testing in high-risk populations
 - Post-stroke
 - Cardiac patients
 - Peri-operative
- Nocturnal oximetry or portable monitoring likely the most practical testing options for most institutions

