Society of Anesthesia and Sleep Medicine

Noninvasive Positive Airway Pressure in the Perioperative Setting

David Hillman, Carla Jungquist, and Dennis Auckley
On behalf of the SASM Clinical Committee

http://www.sasmhq.org
Noninvasive Positive Airway Pressure in the Perioperative Setting

• Indications and contraindications for Noninvasive PAP therapy

• Primary Noninvasive PAP modes available
 – Matching the mode to the condition

• Implementing therapy
 – Masks, PAP settings

• Monitoring therapy

• Adjunctive treatments
Noninvasive PAP Therapies

Decision to be Made

• Is PAP therapy required?
 – Airway obstructing?
 – Witnessed central apneas?
 – Uncontrolled hypoventilation and/or hypoxemia?

• If so, what type of PAP therapy is warranted?
 • CPAP, BPAP, ASV
 • Indications for each modality, consider contraindications, consider timing of the intervention

• Should it be delivered invasively or non-invasively?
 – Invasively = intubation and ventilator support
 – If non-invasively, via face mask or nasal mask?
Noninvasive PAP Therapies

Decisions to be Made

• What settings? At start ... and subsequent adjustment?
 • Therapy: mode, inspiratory and expiratory pressures, back up rate, Ti
 • Comfort: expiratory pressure relief/flex control, rise time, ramp
 • Alarms: apnea, disconnect, low minute ventilation, low ventilation, power failure (with uninterruptable power supply)
 • System: display, humidifier, compliance meter, data storage/retrieval

• Apply continuously, semi-continuously, or just in sleep?

• Is therapy working adequately?

• Added Oxygen? Humidification? Chin strap? Posture?
Noninvasive PAP Therapies

Indications

• Postoperative sleep disordered breathing
 — Obstructive sleep apnea
 — Central sleep apnea

• Postoperative hypoventilation
 — May be related to underlying comorbid conditions (i.e. COPD, OHV)
 — May be related to anaesthetics, opioids and sedatives

• Postoperative hypoxemia
Noninvasive PAP Therapies

Contraindications

- Respiratory arrest
- Shock
- Uncontrolled cardiac ischemia or arrhythmias
- Inability to protect the airway / excessive secretions
- Severe upper GI bleeding
- Facial trauma, burns, anatomic abnormalities
- Agitated or uncooperative
- Severely encephalopathic
Modalities of Noninvasive PAP

• Continuous Positive Airway Pressure (CPAP)
 – Can be a fixed pressure
 – Can be set in autoadjusting mode (pressure range is set).
 Aka ACPAP or APAP.

• Bilevel Pressure Support (BPAP)
 – Separate inspiratory (IPAP) vs expiratory (EPAP) pressures
 – IPAP – EPAP = level of pressure support. Can use a backup rate.
 – Can be fixed pressures (set IPAP and EPAP)
 – Can be pressure ranges for each (IPAP range, EPAP range)
 AKA autoBPAP or ABPAP

• Variable Pressure Support (ASV)
 – Counteracts breathing periodicity in an antidromic fashion by
 varying the amount of pressure support based on the flow
Noninvasive PAP Therapy

Continuous Positive Airway Pressure (CPAP): Breathing on a fixed pressure setting.

Bilevel Positive Airway Pressure (BPAP): Breathing on 2 pressures = IPAP, EPAP. PS = IPAP-EPAP.

Synonyms:
- non-invasive ventilation (NIV)
- nasal IPPV (nIPPV)
- non-invasive IPPV (nIPPV)
- non-invasive pressure support
- bi-level pressure support
- BiPAP®
- VPAP®

Adaptive Servo Ventilation (ASV): The amount of pressure support varies by flow. More support for lower flow, and vice versa.
Purposes for Noninvasive PAP

Continuous Positive Airway Pressure (CPAP)
- End Expiratory Pressure (PEEP, EPAP)
 - Pneumatically splints the upper airway
 - Recruits alveoli
 - ↓ right ventricular preload, ↓ left ventricular afterload
 - Counteracts intrinsic PEEP

Bilevel Pressure Support (= IPAP – EPAP) (BPAP)
- Provides mechanical ventilatory assistance
- Relieves some of the work of breathing
- Stabilizes the chest wall

Variable Pressure Support (ASV)
- Counteracts periodic breathing patterns
Potential Indications for Noninvasive PAP Modalities

• **Continuous Positive Airway Pressure (CPAP)**
 - Obstructive sleep apnea (OSA) / upper airway obstruction
 - Central sleep apnea (CSA) (*in specific cases*)
 - Hypoxic respiratory failure / alveolar recruitment / pulmonary edema
 - *ACPAP should only be used in OSA*

• **Bilevel Pressure Support (BPAP)**
 - OSA
 - CSA (usually with a back up rate)
 - Hypoventilation (i.e. COPD, neuromuscular disease, OHS, meds)
 - Hypoxic respiratory failure (often with hypoventilation)
 - Flail chest

• **Variable Pressure Support (ASV)**
 - CSA with Cheyne-Stokes breathing
 (**cardiac ejection fraction must be > 45%**)
 - CSA due to opioids
Implementing Therapy: **Interface Choice**

Face Mask vs. Nasal Mask

A. Total Face Mask
 - unable to use face mask
 - leaking with other masks

B. Full Face Mask (with anti-asphyxia valve)
 - acute disease
 - naïve patients
 - facial weakness
 - high respiratory impedance
 - nasal obstruction

C. Nasal mask or

D. Nasal pillow mask (± chin strap)
 - less intrusive
 - long term use

Choice balances control vs. comfort/safety
Implementing Therapy: Choice of Ventilator

• Flow generators
 - Classic ventilator that is used noninvasively
 - Deliver a constant volume despite changing impedance

• Pressure generators
 - Leak compensation is inherent
 - Peak airway pressure limited
 - May be better tolerated
 - Types:
 • Basic: home use, basic hospital use
 • May have one or several modes
 • CPAP – fixed pressure that can be adjusted, autotitrating
 • BPAP – spontaneous, spontaneous timed, autotitrating
 • ASV
 • Advanced: generally used in the PACU or ICU settings
 • Additional modes, better displays, oxygen blenders
Ventilator Settings (I): Modes of Operation

• CPAP

• BPAP - Spontaneous
 • Basic need is for CPAP but some pressure assistance needed (e.g. OSA + morbid obesity) or there is intolerance of CPAP
 • Cheaper than S/T (and thus should always use ST if possible)

• BPAP - Spontaneous/Timed (S/T)
 • Where mandatory back up breathing rate is needed (e.g. central apneas or in some hypoventilation cases)

• BPAP - Timed
 • Gives direct control by supplying timed breaths only
 • Well tolerated in conditions of low impedance and/or low drive (e.g. respiratory muscle weakness)

• ASV – antidromic pressure support with a back up rate
Ventilator Settings (II): Pressures

- **EPAP (CPAP)**
 - Usually 5-10 cm H$_2$O but can go up to 20 cm H$_2$O (*though 18-20 cm H$_2$O usually poorly tolerated*)
 - Minimum 4 cm H$_2$O with most NIV

- **IPAP** (*Pressure Support = IPAP – EPAP*)
 - IPAP <10 cm H$_2$O (*some consider this “homeopathic”*)
 - IPAP >20 cm H$_2$O is associated with aerophagia, ↑ mask leaks, ↓ tolerance
 - Usual working range 12 to 20 cm H$_2$O:
 - Start at 12-14 cm H$_2$O, adjust to tolerance & blood gases
 - Sometimes 20 cm H$_2$O is not enough (*some devices go as high as 30 cm H$_2$O*)

- **Autotitration Modes**
 - Set titration limits
 - i.e. for autoadjusting CPAP 6-16 cm H$_2$O
 - For autoadjusting BPAP may need range for both IPAP and EPAP
Different devices have different capabilities & combinations of them:

• **EPAP**
 - May be autotitrated in BPAP or more advanced modes
 - Autotitrates to eliminate upper airway obstruction

• **Pressure Support**
 - Breathing Periodicity*
 • Adaptive Servo Ventilation (ASV)
 - Can adjust EPAP for obstructions and level of PS to stabilize flow
 * heart failure (with ejection fraction > 45%), cerebrovascular disease, opioid use, treatment-emergent central sleep apnea
 Hastings et al, 2010; Kasai et al, 2010
 - **Volume Assured Pressure Support (VAPS)**
 • Average Volume Assured PS (AVAPS® by Philips Respironics)
 • Intelligent Volume Assured PS (IVAPS® by ResMed)
 - Both devices can adjust EPAP for obstructions and level of PS to achieve a predetermined tidal volume or alveolar ventilation

The future: an intelligent machine that defines and treats the breathing disorder?
Volume Assured Pressure Support (VAPS)

• Used for conditions of *usually progressive* hypoventilation and less likely to be started during acute hospitalization

• AVAPS® (Philips Respironics)
 – Predetermine the target tidal volume (8 ml/Kg (ideal body weight))
 – Set IPAP limits to achieve the targeted tidal volume
 – Respiratory rate 2-3 BPM below resting
 – Set the Inspiratory Time
 – Set the Rise time

• IVAPS® (ResMed)
 – Predetermine the target alveolar ventilation*
 – Set IPAP limits to achieve the targeted alveolar ventilation
 – Adjust values for condition to be treated: adjusted/individualized during wakefulness
 * mathematical allowance for dead space

* mathematical allowance for dead space

Canpolat et al, 2014; Kelly et al, 2014
Ventilator Settings (III): Rate, Within Breath Timing, Comfort

• Rate
 – S/T mode: dictates length of expiratory pause before a mandatory breath is given (usually set at 80% of resting rate)
 – Timed mode: patient comfort in specific cases (set ≈ resting rate)

• Within Breath Timing
 – Ti usually set to 40% of Ttot (I:E ratio = 1:1.5)
 – Increase Ti to augment gas exchange
 – Decrease Ti in presence of hyperinflation (need more time to exhale)
 – Can only adjust Ti (min) in case of triggered breaths

• Comfort Settings
 – Delayed “rise time”: slows inspiratory onset, avoid with high RR
 – Expiratory pressure release / flex control: temporarily drops pressure during exhalation for comfort
 – Ramp: slowly increases pressures over time to prescribed settings
Within Breath Timing: BPAP in a Case of Duchenne M. Dystrophy

Spontaneous/Triggered (at Ti min) aroused or awake (A)
Timed (at Ti max) asleep (B)
Both are too short for a patient with neuromuscular disease (look at the waveforms)
Ventilator Settings (IV):
Alarm, System Settings, Display

• Alarms
 – Apnea
 – Disconnect
 – Low Minute Ventilation
 – Low Tidal Volume (AVAPS)
 – Power Failure (with uninterruptable (battery) power supply)

• System Settings / Display
 – Backlight, Language, cm H2O vs Kpa
 – Humidifier settings
 – Compliance, Pressure, Leak, Efficacy
 – Tidal Volume, Respiratory Rate, Minute Volume
 – Oxygen Blender / FiO₂ / Oximetry (only with certain devices)
Hours of Use: Continuous, Semicontinuous or Only With Sleep

• Continuous/Semicontinuous Therapy
 – Acute Respiratory Failure
 • Marked imbalance between load on the respiratory system and capacity to breath against it
 – Breaks from Noninvasive PAP dictated by:
 – Ability to comply with therapy
 – Rate of rise of PCO$_2$ and/or capacity to sustain SaO$_2$ when taken off therapy
 • *Must keep invasive ventilation under consideration if failing*

• Sleep Therapy (± episodic daytime use)
 – Chronic Respiratory Failure
 – Resolving Acute Respiratory Failure (weaning)
 – Sleep Disordered Breathing
Judging Adequacy of Therapy

• Symptoms / side effects
 - Patient comfort, mental state

• Signs
 - Heart rate, respiratory rate, chest wall displacement, use of accessory muscles
 - Synchrony with ventilator
 • leaks, upper airway obstruction, patient effort, trigger sensitivity (+/-)

• Acute indications: Wakeful arterial blood gases
 - Measure at 1-2 hours, then 4-6 hours if little improvement (pH important)

• Chronic indications: Ventilation during sleep
 - SaO$_2$: % sleep time at SaO$_2$ <80% (= PaO$_2$ 45 mmHg)
 - Transcutaneous pCO$_2$ (if available)
 - Waking ABGs
Adjunctive Treatments

- **Oxygen**
 - If adequate CO$_2$ control but persistent hypoxemia despite adjusting ventilatory parameters
 - 1-2 L/min or more to the mask, titrate against SaO$_2$ and pCO$_2$

 (aim for SaO$_2$ of 88 – 92% in COPD patients)

- **Chin Strap**
 - May help with mouth leaks when using a nasal interface

- **Humidification**
 - Useful for persistent dry mouth and/or rhinitis despite chin strap

- **Posture**
 - Elevate the upper body for obesity and diaphragmatic weakness
 - Lateral posture may help in patients with OSA, scoliosis, or s/p thoracoplasty
Conclusions

Non-Invasive Ventilation continues to evolve:

• Expanding role in perioperative care

• Advances:
 – More sophisticated therapy modes are now available
 – Less intrusive masks, simpler devices, better comfort settings
 – Increasing autotitrating capacities

• We have a better understanding of pathophysiology and optimal use of therapy *(right modality, right patient)*

• Use can improve the patient’s quality of life

• There is an increasing capacity to tailor therapy to facilitate transfers between PACU, ICU, the ward, and home

• Use may also lead to reduced hospital length of stay, readmission, ICU admissions, and even mortality
Further Reading

Society of Anesthesia and Sleep Medicine

http://www.sasmhq.org

Thank You!