Upper Airway Dysfunction in Sleep Apnea

Clete A. Kushida, M.D., Ph.D.
Division Chief and Medical Director, Stanford Sleep Medicine
Director, Stanford University Center for Human Sleep Research
Professor, Stanford University Medical Center
Founding and Immediate Past President, World Sleep Society

OSA PREDISPposing FACTORS

- Age (40 - 60 years)
- Male Gender (8 : 1 male : female)
- Ethnicity (e.g., matched for age and BMI, Asians vs. Caucasians have more severe OSA)
- Hypothyroidism
- Medications, Alcohol
- Obesity
- Anatomic Abnormalities
Approximately 5% of OSA in patients are estimated to be directly due to nasal obstruction, but has indirect contributions to OSA severity.

Sleep Related Movement Disorders
Clete A. Kushida, M.D., Ph.D.

NASAL ANATOMY

A = Lateral nasal wall
B = Medial aspect of the inferior turbinate
C = Nasal septum

NASAL RESISTANCE DURING SLEEP

Modified from Olsen et al., 1981

Day
Night

Subjects
Sleep Related Movement Disorders
Clete A. Kushida, M.D., Ph.D.

NASAL RESISTANCE DURING SLEEP

 Modified from Olsen et al., 1981

Mean Values Per Sleep Hour

<table>
<thead>
<tr>
<th>Awakenings</th>
<th>Sleep Stage Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

APNEA AND NASAL RESISTANCE

 Modified from McNicholas et al., 1982

Change Obstructive Apneas/Hour vs. Percent Change in Nasal Resistance
CONSEQUENCES OF INCREASED NASAL RESISTANCE

24 Rhesus monkeys studied at birth, 3 months, and 6 months with plugs placed in their nares had a significant nasal resistance increase.

- The increase in nasal resistance halted growth of the maxillo-mandibular skeleton, and induced changes in the naso-maxillary, mandible, and pharyngeal airway space.
- Development of mouth breathing in association with an increase in nasal resistance, led to mouth opening and mouth breathing during the day and night.
- This obligate mouth breathing and alteration in craniofacial growth are associated with OSA.

A tendency to have a retruded mandible (p=0.05)
- A greater inclination of the mandibular and occlusal planes (p<0.01)
- A tendency to have greater inclination of the upper incisors (p=0.08)
OBESITY, CRANIOFACIAL DYSMORPHISM, AND OSA

Watanabe et al; Am J Respir Crit Care Med. 2002;165:260–265
Sleep Related Movement Disorders
Clete A. Kushida, M.D., Ph.D.
CONTRIBUTORS TO AN ABNORMAL UPPER AIRWAY

- Excess, erythematous pharyngeal tissue
- Enlarged, erythematous uvula
- Macroglossia
- Congested nasal passages
- Maxillomandibular protrusion
- Low-lying soft palate
- High arched hard palate
- Retrognathia
• Infants with apneas had family members with OSA, and small upper airways were a common familial feature

• Relatives of OSA patients reported more OSA symptoms and sleep-related breathing disorders, plus more evidence of craniofacial dysmorphism, compared to controls

Sleep Related Movement Disorders
Clete A. Kushida, M.D., Ph.D.

FAMILIAL CHARACTERISTICS OF OSA

• Prior studies have shown that OSA occurs in genetically-related subjects \(^1\)
• Autosomal dominant inheritance in two small families with OSA \(^2\)
• Specific HLA markers were more frequent in Japanese OSA patients compared to selected populations \(^3\)

CANDIDATE GENES FOR CRANIOFACIAL DYSMORPHISM

• Mutations in genes belonging to the following have been identified as causes of cleft lip/palate, craniosynostosis, and other facial abnormalities:
 – fibroblast growth factor (e.g., FGFR1, FGFR2, FGFR3)
 – transforming growth factor beta (e.g., TGFBR1, TGFBR2)
 – homeobox (e.g., MSX1, MSX2)
 – sonic hedgehog (e.g., PTCH, SHH)
• Other candidate genes known to play a role in craniofacial development include the retinoic acid receptors, genes on the endothelin pathway (e.g., ECE1, EDN1 and EDNRA), and TCOF1, the cause of Treacher Collins syndrome

Sleep Related Movement Disorders
Clete A. Kushida, M.D., Ph.D.

PATENCY OF THE UPPER AIRWAY

Dilating Force

• Neuromuscular tone

Collapsing Forces

• Negative inspiratory force
• Gravity effects (supine)
• Sleep (REM)
• Neuromotor function (decreased tone, reflex and chemosensitivity)
• Physical characteristics
OSA PHENOTYPES

- **Anatomy**
 - Craniofacial dysmorphism
 - Obesity
- Decreased tone of upper airway dilator muscles (HGNS)
- Low (sedatives) and high arousal threshold
- Ventilatory control stability (high loop gain) (O2)
- Fluid retention (diuretics, HOB elevation)