Pain and analgesia in the postoperative patient with obstructive sleep apnea

Anthony G Doufas, MD, PhD
Professor of Anesthesiology, Perioperative and Pain Medicine
Stanford University School of Medicine

DISCLOSURE
I have no financial relationships with commercial support to disclose.
Learning objectives

At the conclusion of this activity, participants should be able to:

Identify hyperalgesic phenotypes in obstructive sleep apnea
Evaluate the risk for altered pain perception in patients with OSA
Determine the risk for opioid-induced respiratory depression
Select appropriate analgesic regimens in the context of OSA
Is obstructive sleep apnea hyperalgesic?

Nocturnal intermittent hypoxia

Sleep deprivation; sleep disruption

Excessive daytime sleepiness

Systemic inflammation

Comorbid insomnia
Intermittent hypoxia

Cleveland Family Study
• Family-based longitudinal cohort
• 634 OSA and controls
• 4 types of pain

A decrease in the minimum nocturnal SpO₂ from 92 to 75% almost doubled the odds for reporting pain

Doufas, Anesthesiology, 2013
Sleep deprivation and sleep disruption

Sleep deprivation promotes inflammation\(^1\) and spontaneous pain\(^2\) in healthy volunteers

Sleep disruption decreased central pain inhibition by 60% in healthy women\(^3\)

CPAP (6-8 weeks) reduced sensitivity to heat pain by 40-100% in patients with severe OSA\(^4\)

\(^1\)Haack, Pain, 2007 \(^2\)Haack, Pain, 2009 \(^3\)Smith, Sleep, 2007 \(^4\)Khalid, Sleep, 2011
Excessive daytime sleepiness

“Sleepy” (MSLT 4.8 vs 12.6 min) pain-free volunteers have 40% lower pain thresholds than the non-sleepy ones\(^1\)

In “sleepy” volunteers, an extended sleep opportunity increased pain thresholds by 25%\(^2\)

Physiological sleepiness diminished the acute anti-nociceptive effect of codeine in healthy volunteers\(^3\)

\(^1\)Chhangani, Sleep, 2009 \hspace{1cm} \(^2\)Roehrs, Sleep, 2012 \hspace{1cm} \(^3\)Steinmiller, Exp Clin Psychopharmacol, 2010
Systemic inflammation

OSA is a chronic inflammatory state

Both sleep fragmentation and intermittent hypoxia can trigger systemic inflammation via:

• Oxidative stress and sympathetic activation\(^1\)

Cleveland Family Study

• Soluble IL-6 receptor levels were positively associated with nocturnal hypoxemia and arousal index\(^2\)

\(^1\)Arnardottir, Sleep, 2009

\(^2\)Mehra, Arch Intern Med, 2006
Insomnia comorbid with OSA

OSA and insomnia co-occur to a high degree\(^1\):

- 58\% of OSA patients complain about insomnia
- 67\% of patients with insomnia are also diagnosed with OSA

Experimental pain models have demonstrated:

- Insomnia decreased central pain inhibition\(^2\)
- Insomnia and chronic pain synergistically increase pain\(^3\)

\(^1\)Luyster, J Clin Sleep Med, 2010 \quad ^2\)Haack, Eur J Pain, 2011 \quad ^3\)Sivertsen, Pain, 2015
Opioid analgesia in patients with OSA

Animal and ex vivo models

Pediatric populations

Adult populations
IH enhances opioid sensitivity in animals

Recurrent hypoxemia increased binding in the mu-opioid receptors (MOR) in rat’s brainstem1

\begin{itemize}
\item Up-regulation of MOR?
\end{itemize}

Recurrent hypoxemia during development increased sensitivity to the respiratory effects of fentanyl in rats2

1Laferriere, Brain Res Bull, 2003 \hspace{2cm} 2Moss, Anesthesiology, 2006
Tonsillectomy in children for OSA treatment

Nocturnal hypoxemia reduced morphine requirement for postoperative analgesia\(^1\)
- Nadir nocturnal SpO\(_2\)< 85%, decreased the dose of morphine by half\(^2\)

Increased morphine requirement postoperatively in OSA\(^3\)
- Higher incidence of respiratory complications

Racial disparity in the postoperative pain in OSA\(^4\)
- Increased pain and morphine requirement in AA, compared with Caucasian children with OSA

\(^1\)Brown, Anesthesiology, 2004
\(^2\)Brown, Anesthesiology, 2006
\(^3\)Sanders, Anesth Analg, 2006
\(^4\)Sadhasivam, Pediatrics, 2012
Adults with OSA and nocturnal hypoxemia

Nocturnal hypoxemia (lower nadir SpO₂) was associated with higher analgesic potency of remifentanil in experimental pain¹

Nocturnal hypoxemia (fraction of sleep time with SpO₂ < 90%) was associated with decreased morphine requirement for postoperative analgesia in bariatric patients²

¹Doufas, PLoS ONE, 2013
²Turan, PLoS ONE, 2015
Pain and opioid analgesic effect in OSA

<table>
<thead>
<tr>
<th>Trials</th>
<th>N</th>
<th>Exposure</th>
<th>Outcome</th>
<th>Pain</th>
<th>Analgesic Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXPERIMENTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Khalid 2011</td>
<td>12</td>
<td>OSA diagnosis</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doufas 2013</td>
<td>43</td>
<td>Nadir SpO₂</td>
<td>↓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROSPECTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown 2006</td>
<td>22</td>
<td>Nadir SpO₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanders 2006</td>
<td>82</td>
<td>Respiratory distress index</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sadhasivam 2012</td>
<td>194</td>
<td>OSA diagnosis</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RETROSPECTIVE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brown 2004</td>
<td>46</td>
<td>Nadir SpO₂</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doufas 2013</td>
<td>638</td>
<td>Nocturnal SpO₂</td>
<td>↑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turan 2015</td>
<td>218</td>
<td>Time SpO₂ < 90%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Opioids and severe respiratory depression

ADULTS

Death (55%) or permanent brain damage (22%), among 92 claims in the context of opioid analgesia

- Established diagnosis or high risk for OSA (25%); obesity (66%); somnolence before the event (62%)

Congestive heart failure, postoperative ARF, OSA, and DM, prevalent among patients with life-threatening respiratory events

OSA and respiratory events in PACU predict delayed respiratory depression

- Chronic and postoperative use of benzodiazepines also predict respiratory depression

CHILDREN

Death or neurologic injury post-tonsillectomy: 57% were at risk for OSA, based on ASA criteria

- In at-risk-for-OSA children, adverse event was predominantly attributed to apnea than hemorrhage

1 Lee, Anesthesiology, 2015
2 Ramachandran, J Clin Anesth, 2011
3 Weingarten, Anest Analg, 2015
4 Ramachandran, Anest Analg, 2017
5 Coté, Anest Analg, 2014
Opioids worsen sleep-disordered breathing

Sleep-disordered breathing and oxygenation worsen after surgery in both OSA1,2 and non-OSA3 patients

- Large variation of effect1
- For OSA patients, age, preoperative AHI, and opioid dose were major predictors2

Among 833 patients recovering from non-cardiac surgery, hypoxemia is common and persistent4

- 21% averaged at least 10 min per hour with SpO$_2$ < 90%
- No difference between the use of long- or short-acting opioids5
- STOP-Bang questionnaire does not predict hypoxemia6

1Chung, Anesthesiology, 2014
2Chung, Anesthesiology, 2014
3Chung, Anesth Analg, 2015
4Sun, Anesth Analg, 2015
5Belcher, Anesth Analg, 2016
6Khanna, Anesth Analg, 2016
Respiratory effects of opioids in OSA patients

A 0.5 mcg/kg bolus of fentanyl in children under general anesthesia led to apnea in 46% of OSA vs 5% of controls\(^1\)

Remifentanil infusion (0.075 mcg/kg/min) during a sleep study resulted in dramatic increase of central apnea in 4 out of 10 adults with OSA\(^2\)

- “Opioid-emergent central sleep apnea”

Variable effects of opioids on respiration in the context of OSA

\(^1\)Waters, J Appl Physiol, 2002
\(^2\)Bernards, Anesthesiology, 2009
Variability in OSA pathogenic mechanisms

Jordan, Lancet, 2014
Mitigation of opioid side effects

- Neuraxial anesthesia
- Ketamine preserves dilators

Opioid-induced Ventilatory Impairment

Respiratory Depression

Analgesia

Sedation

Airway Collapsibility

Minimize opioids
- Selective reversal (ampakines, GAL021)\(^1,2\)
- Biased ligands of \(\mu\)-OR (TRV130)\(^3\)

Use of CPAP\(^4\)

Short-acting anesthetics

Multimodal analgesia

Acetylcholinesterase inhibitors\(^5,6\)

Dose / Effect Site Concentration of Opioids

\(^1\)Oertel, Clin Pharmacol Ther, 2010
\(^2\)Roozekrans, Anesthesiology, 2014
\(^3\)Soergel, Pain, 2014
\(^4\)Liao, Anesthesiology, 2013
\(^5\)Meuret, Anesthesiology, 2000
\(^6\)Hedner, Am J Respir Crit Care Med, 2003
\(^7\)Eikermann, Anesthesiology, 2012
Neuraxial & regional anesthesia in OSA

Analysis of more than 1,000,000 cases of total hip and knee arthroplasties between 2006 and 2013\(^1\):

- Increase in the use of peripheral nerve block from 9 to 15%
- Decrease in the daily prescription of opioids by 17%

Among 30,024 patients with OSA undergoing total joint arthroplasty\(^2\):

- 11% neuraxial, 15% combined and 74% general anesthesia
- Less complications with neuraxial vs general anesthesia; OR: 0.83 (95% CI: 0.74 - 0.93)

\(^1\)Cozowicz, Anesth Analg, 2017

\(^2\)Memtsoudis, Reg Anesth Pain Med, 2013
Opioid-sparing post-tonsillectomy in OSA

Postoperative ibuprofen is effective analgesic\(^1\)
- Randomized to morphine (N=30, 0.1 - 0.35 mg/kg, Q 4h), or ibuprofen (N=26, 10 mg/kg, Q 6h)
- No difference in pain; decreased number of desaturations events with ibuprofen

Intraoperative dexmedetomidine (Dex) infusion\(^2\)
- Randomized to Dex (N=61, 2 mcg/kg bolus, 0.7 mcg/kg/min), or Fentanyl (N=61, a bolus of 1 mcg/kg)
- Decreased postoperative opioid analgesia and desaturation events in Dex vs Fentanyl groups
- Maximum pain was higher in the F than Dex groups (5 vs 3, OPS)

\(^1\)Kelly, Pediatrics, 2015
\(^2\)Patel, Anesth Analg, 2010
Support airway patency postoperatively

Postoperative positive airway pressure (PAP)\(^1\)
- 177 patients were randomized to receive Auto-titrated PAP or routine care for 5 postoperative nights
- APAP decreased AHI by 89% on 3\(^{rd}\) postoperative night

CPAP early after bariatric surgery\(^2\)
- Crossover randomization of 38 bariatric (BMI: 46 kg/m\(^2\)) patients to atmospheric pressure (AP), or CPAP in PACU
- CPAP treatment decreased AHI during opioid analgesia in the PACU by 69%
- Total morphine-equivalent dose administered 2.9 vs 2.5 mg

\(^1\) Liao, Anesthesiology, 2013
\(^2\) Zaremba, Anesthesiology, 2016
Summary

Several OSA-related phenotypes might enhance pain perception

Nocturnal intermittent hypoxemia in OSA might be associated with reduced requirement for opioid analgesia

Postoperative opioids may aggravate sleep-disordered breathing

• A direct link with life-threatening respiratory events is yet to be demonstrated

Mitigating respiratory depression during postoperative analgesia

• Maintaining arousal responses, minimizing opioids, and/or supporting the airway via mechanical means