Sleep Evaluation in Newly Discovered OSA In and After Hospital

Clete A. Kushida, M.D., Ph.D.

Professor, Stanford University Medical Center
Medical Director, Stanford Sleep Medicine Center
Director, Stanford Center for Human Sleep Research

• Sleep evaluation in newly discovered OSA in patients during hospitalization
• Sleep evaluation in newly discovered OSA in patients after hospitalization
• Management of OSA in patients during and after hospitalization
• What about the future?

Alzheimer’s Disease: OSA

OSA is found in 33-53% of patients with probable Alzheimer’s Disease

APOE4 genotype: Risk factor for SDB in the middle-aged Wisconsin Sleep Cohort Study, but not in the elderly Honolulu-Asian Study cohort

Stroke

- Stroke can result in SDB, including central and obstructive apnea and disorders of respiratory control.
- SDB is the most commonly reported disturbance post-stroke, although adults are observed to have a high incidence of periodic breathing and Cheyne-Stokes respiration.
- Patients post-stroke have a high OSA prevalence (60-93%). In a meta-analysis of 2343 subjects with ischemic or hemorrhagic stroke or TIA, OSA was present in 72%, with only 7% due to central apnea.

Cardiovascular Disease

- About 50% of OSA patients are hypertensive, and an estimated 30% of hypertensive patients also have OSA, often undiagnosed.
- OSA was detected in 37% of 450 and 11% of 81 patients with heart failure resulting from systolic dysfunction referred for polysomnography.
- OSA in patients with CAD ranges from 26% to 66%, partially explained by the different AHI cutoff scores.

- Sleep evaluation in newly discovered OSA in patients during hospitalization
 - Prevalence of OSA in patients with chronic medical conditions
 - What evidence-based tools can be used to evaluate OSA in hospitalized patients?
 - What else can improve the pretest probability for detecting OSA in hospitalized patients?
• Questionnaires (e.g., STOP-Bang) have high sensitivity to predict OSA (AHI ≥ 15 or ≥ 30 events/hour: 93 and 100%, respectively).¹

• “The strength of evidence is low that some clinical prediction rules may be useful in the prediction of a diagnosis of OSA.”¹

• Age, sex, body mass index, bed partner observation of apnea and pharyngeal examination can be significant predictors of AHI.²

• Trained and experienced sleep physicians are best suited to evaluate and treat OSA patients.

Pre-Test Probability for Moderate to Severe OSA

- to predict OSA (AHI ≥ 15 or ≥ 30 events/hour: 93 and 100%, respectively).¹

Questionnaires vs. PSG

• Sleep evaluation in newly discovered OSA in patients during hospitalization
 • Prevalence of OSA in patients with chronic medical conditions
 • What evidence-based tools can be used to evaluate OSA in hospitalized patients?
 • What else can improve the pretest probability for detecting OSA in hospitalized patients?

“...and on the box sat a fat and red-faced boy, in the state of somnolency.” C. Dickens

OSA Predisposing Factors
• Age (40 - 60 years)
• Male Gender (8 : 1 male : female)
• Hypothyroidism
• Medications, Alcohol
• Obesity
• Anatomic Abnormalities
Contributors to an Abnormal Upper Airway

- Excess, erythematous pharyngeal tissue
- Enlarged, erythematous uvula
- Macroglossia
- Congested nasal passages
- Low-lying soft palate
- High arched hard palate

Craniofacial Dysmorphism and OSA

- Infants with apneas had family members with OSA, and small upper airways were a common familial feature
- Relatives of OSA patients reported more OSA symptoms and sleep-related breathing disorders, plus more evidence of craniofacial dysmorphism, compared to controls

Management of Obstructive Sleep Apnea
Clete A. Kushida, M.D., Ph.D.
650-721-7560, clete@stanford.edu

Craniofacial Dysmorphism
Due to Non-Genetic Factors

- Early problems with nasal breathing such as nasal allergies have a negative impact on upper airway development.
- The increase in nasal resistance can halt growth of the maxillo-mandibular skeleton, and induced changes in the naso-maxillary, mandible, and pharyngeal airway space.
- Development of mouth breathing in association with an increase in nasal resistance, leads to mouth opening and mouth breathing during the day and night.
- This obligate mouth breathing and alteration in craniofacial growth are associated with OSA.

- A tendency to have a retruded mandible (p=0.05)
- A greater inclination of the mandibular and occlusal planes (p<0.01)
- A tendency to have greater inclination of the upper incisors (p=0.08)

Juliano ML. Mouth breathing children have cephalometric patterns similar to those of adult patients with obstructive sleep apnea syndrome. Arch Otolaryngol 2003;129(9):985-9.
• Sleep evaluation in newly discovered OSA in patients during hospitalization
• Sleep evaluation in newly discovered OSA in patients after hospitalization
• Management of OSA in patients during and after hospitalization
• What about the future?

Patient presents to BCSS for evaluation of suspected OSA

Does patient have a high pretest probability of moderate to severe OSA?

Does patient have symptoms or signs of co-morbid medical disorders?

Does patient have symptoms or signs of co-morbid sleep disorders?

Sleep Study (HST or in-lab PSG)

HST

In-lab polysomnography

OSA diagnosed?

YES

NO

NO

YES

OSA diagnosed?

YES

NO

NO

YES

Out-of-Center Sleep Testing Decision Tree

Out-of-Center Sleep Testing

Does your Sleep Center Administer Out-of-Center Sleep Tests?

Sleep Review. Third Quarter 2015 Sleep Center Survey Results (327 responses between 7/22/2015 and 8/10/2015), September 2015. sleepreviewmag.com
• Sleep evaluation in newly discovered OSA in patients **during** hospitalization
• Sleep evaluation in newly discovered OSA in patients **after** hospitalization
• Management of OSA in patients **during** and **after** hospitalization
• **What about the future?**
 • What are OSA management options for patients prior to and following discharge from the hospital?

Treatment for Snoring and OSA

- PAP
- Surgery*
- Oral Appliances*
- Nasal Valves and Stents*
- Negative Pressure Devices
- Weight Loss*
- Behavior Modification*
- Medications

Devices

- **CPAP** (continuous positive airway pressure): delivers single, fixed pressure
- **BPAP** (bilevel positive airway pressure): delivers inspiratory and expiratory pressures with or without backup rate
- **APAP** (auto-titrating positive airway pressure): delivers pressure based on flow signal at almost a breath-to-breath basis
- **ASV** (adaptive pressure support servo-ventilation): delivers a small but varying amount of ventilatory support
Fixed CPAP vs. APAP

- Statistically but not clinically significant difference of 11 minutes of added use per night with APAP
- Analysis of 147,402 days of SmartCard data
- Most dense usage between 300 – 500 min
- Red circles indicate outliers for analyses

CPAP Therapy and Daytime Sleepiness
Management of Obstructive Sleep Apnea
Clete A. Kushida, M.D., Ph.D.
650-721-7560, clete@stanford.edu

CPAP Therapy and HTN

NCF in OSA Patients

<table>
<thead>
<tr>
<th>Author</th>
<th>Year</th>
<th>Study Type</th>
<th>n OSA</th>
<th>Severity</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barbé</td>
<td>2001</td>
<td>RCT</td>
<td>29/25</td>
<td>severe</td>
<td>no difference in Active vs. Sham CPAP groups for A/P, L/M, and E/F tests</td>
</tr>
<tr>
<td>Bédard</td>
<td>1991</td>
<td>CC</td>
<td>20/10</td>
<td>mod-severe</td>
<td>decrease* in 7/9 A/P and 2/4 E/F tests; decrease* in 5/6 L/M tests (only severe cases)</td>
</tr>
<tr>
<td>Cheshire</td>
<td>1992</td>
<td>CS</td>
<td>29</td>
<td>mod-severe</td>
<td>correlation* between AHI and 1/2 EF tests and IQ decrease; no correlation in 3 A/P or 1 L/M tests</td>
</tr>
<tr>
<td>Findley</td>
<td>1986</td>
<td>CS</td>
<td>26</td>
<td>severe</td>
<td>decrease* in 4/8 A/P, L/M, and E/F tests for hypoxemic vs. non-hypoxemic OSA subjects</td>
</tr>
<tr>
<td>Greenberg</td>
<td>1987</td>
<td>CC</td>
<td>14/14</td>
<td>severe</td>
<td>decrease* in 7/14 A/P and E/F tests vs. controls</td>
</tr>
<tr>
<td>Ingram</td>
<td>1994</td>
<td>CC</td>
<td>16/43</td>
<td>mild-severe</td>
<td>no difference in OSA vs. controls subjects; ≥54 yrs for 1 A/P test</td>
</tr>
<tr>
<td>Kim</td>
<td>1997</td>
<td>CH</td>
<td>199/642</td>
<td>mild-severe</td>
<td>negative association* between log AHI and psychomotor efficiency in 8 A/P, L/M, or E/F tests</td>
</tr>
<tr>
<td>Naëgelé</td>
<td>1995</td>
<td>CC</td>
<td>17/17</td>
<td>severe</td>
<td>decrease* in 1/4 A/P tests, 8/10 L/M tests, and 3/9 E/F tests vs. controls</td>
</tr>
<tr>
<td>Presty</td>
<td>1991</td>
<td>CS</td>
<td>119</td>
<td>mild-severe</td>
<td>decrease* in A/P and L/M tests for those OSA patients with severe hypoxia</td>
</tr>
<tr>
<td>Redline</td>
<td>1997</td>
<td>CC</td>
<td>32/20</td>
<td>mild-mod</td>
<td>decrease* in 1/4 A/P tests and 1/5 E/F tests; no difference in 3 L/M tests vs. controls</td>
</tr>
<tr>
<td>Telakivi</td>
<td>1993</td>
<td>CS</td>
<td>31</td>
<td>mild-severe</td>
<td>no correlation between hypoxia or sleepiness and 7 A/P, L/M, and E/F tests</td>
</tr>
<tr>
<td>Verstraeten</td>
<td>1996</td>
<td>CC</td>
<td>26/22</td>
<td>mild-severe</td>
<td>no differences in OSAS vs. insomnia subjects for 6 A/P, L/M, or E/F tests</td>
</tr>
</tbody>
</table>

*Significance Level: p < 0.05; Study Type: RCT = randomized control trial; CC = case-control, CH = cohort; CS = case series; n: cases/controls (if applicable); OSA Severity by average Apnea-Hypopnea Index (AHI), with mild = 5 - 15 events/hr, moderate = 15 - 30 events/hr, and severe > 30 events/hr; Test Type: A/P = tests of attention and psychomotor function, L/M = tests of learning and memory, E/F = tests of executive and frontal-lobe function

CPAP Adherence-Adjusted Primary Neurocognitive Outcomes
OA vs. PAP

OA vs. PAP

Parallel/First Arm Crossover Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>OA</th>
<th>PAP</th>
<th>OA vs. PAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim J</td>
<td>10</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

Crossover Studies

<table>
<thead>
<tr>
<th>Study</th>
<th>OA</th>
<th>PAP</th>
<th>OA vs. PAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lim J</td>
<td>10</td>
<td>10</td>
<td>1.0</td>
</tr>
</tbody>
</table>

• Sleep evaluation in newly discovered OSA in patients during hospitalization
• Sleep evaluation in newly discovered OSA in patients after hospitalization
• Management of OSA in patients during and after hospitalization
• What about the future?

Healthcare Transformation

• The practice of medicine is transforming to become more:
 o Efficient
 o Adaptable
 o Cost-Effective
 o Multidisciplinary
 o Patient-Centered
SMART DOCS Goals

- To introduce a new Patient-Centered Outcomes and Coordinated-Care Management (PCCM) approach for the future practice of sleep medicine
- To compare the PCCM approach to conventional (CONV) sleep medicine practice in a clinical trial evaluating:
 - Patient ratings of health care performance
 - Disease-specific outcomes
 - Global health measures
 - Health care utilization

Overall Study Sample

Randomized Clinical Trial
Includes new adult patients with signs/symptoms of a sleep disorder

1,836 Participants
56.5% Male
Average Age: 50.1 years

Comparison between Conventional Diagnostic and Treatment Approach and Patient-Centered Outcomes and Coordinated-Care Management Approach:
- Conventional Approach: 50.1%
- PCCM Approach: 49.9%
PCCM Approach

- Using newer sleep medicine tools and technologies
 - More effective sleep disorder management
 - Examples:
 - Continuous blood pressure monitoring
 - Wearable technology to track sleep-wake patterns

- Utilizing sleep medicine professionals in a primary care setting
 - Expedite diagnosis and treatment at front lines of care
 - Example:
 - Establish a sleep disorder practice within primary care

PCCM Approach

- Facilitating collaboration among sleep specialists, providers, patients, medical professional organizations, and industry
 - Stakeholder engagement for improved patient care
 - Example:
 - Input on content/design for personalized patient materials

- Providing patients with better access to information, resources, and data about sleep disorders, comorbidities, treatments, and personal health information
 - More informed health care decisions
 - Example:
 - Patient portal – sleep portal

PCCM Sleep Education

- Patient Portal – Sleep Disorders
Obstructive Sleep Apnea

- includes branching logic and clinician report
- We use mainly out-of-center sleep testing (OCST) devices with ambulatory blood pressure monitoring for those who have borderline or definitive hypertension
- For those with high predictive probability for diabetes, measure glucose, insulin, and lipid levels
- Genetic markers (e.g., ApoE4) will be tested
- Adherence measures are uploaded to the web portal

Blood Pressure Monitoring
Obstructive Sleep Apnea

- Patients prescribed oral appliances have their probability of success and their target protrusive position assessed by the MATRx device
- There are integrated adherence monitoring devices in the OAs
- OA efficacy is evaluated with the OCST devices or in-lab polysomnograms
- OA efficacy and adherence data are placed on the web portal

Oral Appliance Titration

Adherence Measures

Tools and Technologies

- Alliance Sleep Questionnaire
- Greater use of OCSTs
- Ambulatory blood pressure assessments (SOMNOtouch)
- Oral appliance titration (MATRx)
- Oral appliance adherence assessment (TheraMon)
- Sleep-wake patterns, fitness, nutrition (Jawbone UP24)
- Cognitive behavioral therapy for insomnia (SleepRate)
- Salivary dim light melatonin onset (DLMO)
- Diabetic risk assessment, inflammatory markers
- Genetic markers
Primary Care

Sleep physician, nurses, and technologists at PCP office to:
• Assist in patient evaluation and referral decisions
• Order and set-up home sleep studies at PCP office
• Promptly attend to management issues, e.g., suboptimal adherence, CBTi instruction

Coordinated Care

• Sleep technologists with Certification in Clinical Sleep Health™ (CCSH) “work directly with sleep medicine patients, families, and practitioners to coordinate and manage patient care, improve outcomes, educate patients and the community, and advocate for the importance of good sleep.”
• Contact patients within one week after sleep studies and after receiving PAP to address any questions or issues.

Outcomes

Impact on Improved Health Care Performance

Primary Endpoint: Consumer Assessment of Healthcare Providers and Systems Clinician and Group Survey (CGCAHPS) Global Provider Rating
Secondary Endpoint: Items on “How Well Providers (or Doctors) Communicate with Patients”
Secondary Endpoint: Items on the CGCAHPS Health Information Technology Item Set

Impact on Cost Containment
Secondary Endpoint: Out-of-pocket costs
Outcomes

Impact on Improved Health
- Primary Endpoint: SF-36 Vitality Component Score
- Secondary Endpoint: SF-6D Health Utility index
- Secondary Endpoint: FOSQ-10
- Secondary Endpoint: SF-36 Physical Component Score
- Secondary Endpoint: Alliance Sleep Questionnaire (ASQ)
- Disorder Specific Measures
 - Epworth Sleepiness Scale (ESS, normative value 12.0 ± 4.0)
 - Insomnia Severity Index (ISI, normative value 20.0 ± 5.0)
 - International Restless Legs Syndrome Study Group Rating Scale (IRLS, normative value 22.0 ± 8.7)

SMART DOCS
SMART DOCS: A New Patient-Centered Outcomes and Coordinated-Care Management Approach for the Future Practice of Sleep Medicine
- Article aims to stimulate discussion in the sleep community
- Introduces new PCCM approach
- Describes testing of PCCM vs. Conventional approach