Chronic Intermittent Hypoxia Alters Local Respiratory Circuit Function at the Level of the preBötzinger Complex

The preBotzinger complex in rats is a respiratory neuronal network driving inspiratory rhythm. Chronic intermittent hypoxia (as is the case in OSA) causes irregular firing of the preBotzinger complex. Dysrhythmia in the preBotzinger complex loosens the coupling of neuronal transmission with XIIn. Lipid peroxidation is increased in both the preBotzinger complex and XIIn as a result of chronic intermittent hypoxia. Treatment with antioxidant can reverse the instability in neuronal coupling caused by the exposure hypoxia. This work demonstrates the effect of hypoxia on rhythmic breathing in a salient neuronal network and provides a possible therapeutic strategy to re-establish rhythmic neuronal connectivity in this pathway.